--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model_index: - name: food101_outputs results: - task: name: Image Classification type: image-classification dataset: name: nateraw/food101 type: food101 args: default metric: name: Accuracy type: accuracy value: 0.8912871287128713 --- # food101_outputs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the nateraw/food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.4501 - Accuracy: 0.8913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8271 | 1.0 | 592 | 0.6070 | 0.8562 | | 0.4376 | 2.0 | 1184 | 0.4947 | 0.8691 | | 0.2089 | 3.0 | 1776 | 0.4876 | 0.8747 | | 0.0882 | 4.0 | 2368 | 0.4639 | 0.8857 | | 0.0452 | 5.0 | 2960 | 0.4501 | 0.8913 | ### Framework versions - Transformers 4.9.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.9.1.dev0 - Tokenizers 0.10.3