File size: 4,350 Bytes
b73d566 f36e2b5 b73d566 f36e2b5 b73d566 f36e2b5 4dd234e b73d566 2586483 b73d566 2586483 b73d566 5ed8665 b73d566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned_ASL_Isolated_Swin_dataset2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned_ASL_Isolated_Swin_dataset2
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the ASL_Isolated_Swin_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0439
- Accuracy: 0.9846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5603 | 1.09 | 100 | 1.0931 | 0.6423 |
| 0.9055 | 2.17 | 200 | 0.5069 | 0.8615 |
| 0.4254 | 3.26 | 300 | 0.5634 | 0.8154 |
| 0.5814 | 4.35 | 400 | 0.2883 | 0.9154 |
| 0.4953 | 5.43 | 500 | 0.2710 | 0.9154 |
| 0.4456 | 6.52 | 600 | 0.2451 | 0.9346 |
| 0.4524 | 7.61 | 700 | 0.2625 | 0.9308 |
| 0.3095 | 8.7 | 800 | 0.2397 | 0.9462 |
| 0.3224 | 9.78 | 900 | 0.1787 | 0.9385 |
| 0.4069 | 10.87 | 1000 | 0.3376 | 0.9231 |
| 0.3467 | 11.96 | 1100 | 0.1603 | 0.9538 |
| 0.469 | 13.04 | 1200 | 0.2247 | 0.9423 |
| 0.4523 | 14.13 | 1300 | 0.1552 | 0.9538 |
| 0.2923 | 15.22 | 1400 | 0.3376 | 0.9346 |
| 0.3139 | 16.3 | 1500 | 0.1449 | 0.9577 |
| 0.3873 | 17.39 | 1600 | 0.1495 | 0.9654 |
| 0.2994 | 18.48 | 1700 | 0.1821 | 0.9654 |
| 0.2611 | 19.57 | 1800 | 0.1294 | 0.9769 |
| 0.1883 | 20.65 | 1900 | 0.0879 | 0.9731 |
| 0.2076 | 21.74 | 2000 | 0.1969 | 0.95 |
| 0.3531 | 22.83 | 2100 | 0.2135 | 0.9538 |
| 0.4339 | 23.91 | 2200 | 0.1030 | 0.9615 |
| 0.2959 | 25.0 | 2300 | 0.1579 | 0.9731 |
| 0.1546 | 26.09 | 2400 | 0.1648 | 0.9692 |
| 0.1315 | 27.17 | 2500 | 0.1514 | 0.9577 |
| 0.2191 | 28.26 | 2600 | 0.1257 | 0.9538 |
| 0.16 | 29.35 | 2700 | 0.1162 | 0.9692 |
| 0.1567 | 30.43 | 2800 | 0.1252 | 0.9731 |
| 0.1147 | 31.52 | 2900 | 0.2642 | 0.9577 |
| 0.1434 | 32.61 | 3000 | 0.1371 | 0.9769 |
| 0.2488 | 33.7 | 3100 | 0.1161 | 0.9769 |
| 0.1646 | 34.78 | 3200 | 0.2052 | 0.9615 |
| 0.1326 | 35.87 | 3300 | 0.1995 | 0.9769 |
| 0.137 | 36.96 | 3400 | 0.1124 | 0.9731 |
| 0.1633 | 38.04 | 3500 | 0.1620 | 0.9692 |
| 0.1593 | 39.13 | 3600 | 0.1838 | 0.9731 |
| 0.2192 | 40.22 | 3700 | 0.1331 | 0.9769 |
| 0.1495 | 41.3 | 3800 | 0.1291 | 0.9731 |
| 0.226 | 42.39 | 3900 | 0.1090 | 0.9692 |
| 0.1383 | 43.48 | 4000 | 0.0994 | 0.9654 |
| 0.0491 | 44.57 | 4100 | 0.0660 | 0.9769 |
| 0.1034 | 45.65 | 4200 | 0.0698 | 0.9808 |
| 0.0893 | 46.74 | 4300 | 0.0439 | 0.9846 |
| 0.1789 | 47.83 | 4400 | 0.0577 | 0.9808 |
| 0.0569 | 48.91 | 4500 | 0.0547 | 0.9846 |
| 0.1113 | 50.0 | 4600 | 0.0605 | 0.9846 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|