File size: 2,614 Bytes
b73d566
 
 
 
6cda71c
b73d566
 
 
 
 
 
 
 
 
 
 
 
 
6cda71c
b73d566
6cda71c
 
b73d566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00b156e
b73d566
 
 
 
 
00b156e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73d566
 
 
 
5ed8665
 
 
b73d566
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned_ASL_Isolated_Swin_dataset2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned_ASL_Isolated_Swin_dataset2

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the ASL_Isolated_Swin_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0558
- Accuracy: 0.9846

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6758        | 1.09  | 100  | 1.3206          | 0.5769   |
| 1.0717        | 2.17  | 200  | 0.6482          | 0.8154   |
| 0.627         | 3.26  | 300  | 0.4486          | 0.8654   |
| 0.5397        | 4.35  | 400  | 0.2978          | 0.8923   |
| 0.537         | 5.43  | 500  | 0.1513          | 0.9423   |
| 0.3766        | 6.52  | 600  | 0.4737          | 0.8846   |
| 0.3994        | 7.61  | 700  | 0.3060          | 0.9115   |
| 0.2139        | 8.7   | 800  | 0.1345          | 0.9577   |
| 0.2995        | 9.78  | 900  | 0.1558          | 0.95     |
| 0.2835        | 10.87 | 1000 | 0.0943          | 0.9731   |
| 0.3089        | 11.96 | 1100 | 0.0913          | 0.9577   |
| 0.3632        | 13.04 | 1200 | 0.0888          | 0.9692   |
| 0.327         | 14.13 | 1300 | 0.1038          | 0.9808   |
| 0.313         | 15.22 | 1400 | 0.0976          | 0.9731   |
| 0.1752        | 16.3  | 1500 | 0.0504          | 0.9808   |
| 0.2397        | 17.39 | 1600 | 0.0612          | 0.9808   |
| 0.1348        | 18.48 | 1700 | 0.0558          | 0.9846   |
| 0.2842        | 19.57 | 1800 | 0.0504          | 0.9769   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1