File size: 2,014 Bytes
b73d566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed8665
b73d566
5ed8665
 
b73d566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed8665
 
 
 
 
 
 
 
 
b73d566
 
 
 
5ed8665
 
 
b73d566
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned_ASL_Isolated_Swin_dataset2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned_ASL_Isolated_Swin_dataset2

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0867
- Accuracy: 0.9769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6751        | 1.09  | 100  | 1.1247          | 0.6308   |
| 0.928         | 2.17  | 200  | 0.5505          | 0.8462   |
| 0.4477        | 3.26  | 300  | 0.3167          | 0.9038   |
| 0.5154        | 4.35  | 400  | 0.2101          | 0.9423   |
| 0.4627        | 5.43  | 500  | 0.2289          | 0.9346   |
| 0.3103        | 6.52  | 600  | 0.1501          | 0.9615   |
| 0.3637        | 7.61  | 700  | 0.1319          | 0.9769   |
| 0.1941        | 8.7   | 800  | 0.0861          | 0.9769   |
| 0.1663        | 9.78  | 900  | 0.0867          | 0.9769   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1