File size: 24,029 Bytes
6ad3005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "cd47645b-3a64-433e-89a0-25fa30217a2c",
   "metadata": {},
   "source": [
    "## 説明"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "06077106-1f0b-406e-8c82-fb127574bebe",
   "metadata": {},
   "source": [
    "Dreambooth-Loraの学習をPeperspaceで動かす為のNotebook  \n",
    "本家sd-scripts(https://github.com/kohya-ss/sd-scripts)  \n",
    "\n",
    "以下ソースを参考に作成してるで。  \n",
    "sd-scripts(https://github.com/kohya-ss/sd-scripts)  \n",
    "colab用kohya-trainer(https://github.com/Linaqruf/kohya-trainer)  \n",
    "Peperspace用webui(https://github.com/Engineer-of-Stuff/stable-diffusion-paperspace)  \n",
    "\n",
    "学習素材と正規化画像はあらかじめstorageかtmpにアップしてな。  \n",
    "永続Storageがある事と一部ターミナル使う前提になってるから無課金では動かんかもしれんで  "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b07c14b6-b67f-41f3-9a1b-02730b32becf",
   "metadata": {},
   "source": [
    "<span style=\"color: red\">既知の不具合</span>  \n",
    "学習実行時に以下の警告メッセージが表示されるで  \n",
    "解決策わかったら教えてください  \n",
    "- 「--use_8bit_adam 」を有効にすると別パッケージから参照の警告メッセージが表示される。(多分bitsandbytesのパスがおかしい)  \n",
    "- 「Could not load dynamic library 'libnvinfer_plugin.so.7';」の警告メッセージが表示される。(libnvinfer_plugin.so.7がpython3.9に無い?)  \n",
    "- 「Unable to register cuBLAS factory 」の警告メッセージが表示される。(xpaformer入れる為にcudnnのバージョン下げてるのが怪しい)  \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4eb1d725-e55c-41e9-8574-da6dfb641ff0",
   "metadata": {
    "tags": []
   },
   "source": [
    "## 1.SETTING"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d33d8e53-af14-4033-9ba2-0c4044541763",
   "metadata": {
    "tags": []
   },
   "source": [
    "# 1-0 設定値保存\n",
    "仮想マシン起動時毎回実行する"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e90d2a8f-f497-421d-9a7e-3921caff41c4",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "#リポジトリ 永続ストレー、一時領域ジシンボリックリンク作成\n",
    "repo_dir = '/notebooks'    \n",
    "!ln -s /storage/ /notebooks/\n",
    "!ln -s /tmp/ /notebooks/\n",
    "\n",
    "#その他設定値\n",
    "activate_xformers = True # Enables the xformers optimizations using pre-built wheels.\n",
    "\n",
    "%store repo_dir activate_xformers"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f1b1a2f-d1ab-4b84-87dc-c83190bf506d",
   "metadata": {
    "tags": []
   },
   "source": [
    "# 1-1.Git Clone\n",
    "導入時 更新時"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "114fc353-213a-4d91-afce-f733ba5a9de2",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "%cd {repo_dir}\n",
    "\n",
    "import os\n",
    "\n",
    "def clone_kohya_sd_scripts():\n",
    "  # Check if the directory already exists\n",
    "  if os.path.isdir('/notebooks/sd-scripts'):\n",
    "    %cd /notebooks/sd-scripts\n",
    "    print(\"This folder already exists, will do a !git pull instead\\n\")\n",
    "    !git pull\n",
    "  else:\n",
    "    !git clone https://github.com/kohya-ss/sd-scripts\n",
    "\n",
    "# Clone or update the Kohya Trainer repository\n",
    "clone_kohya_sd_scripts()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b52dd301-0ed2-4ae4-911e-643d39c0f1bf",
   "metadata": {
    "tags": []
   },
   "source": [
    "# 1-2.Install and Setting\n",
    "仮想マシン起動時毎回実行する"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85954927-9497-4a2c-995a-dc4e6ba4b16c",
   "metadata": {},
   "outputs": [],
   "source": [
    "%store -r repo_dir activate_xformers\n",
    "\n",
    "appDir = f'{repo_dir}/sd-scripts'\n",
    "%cd {appDir}\n",
    "\n",
    "!pip install --upgrade pip\n",
    "!pip install --upgrade -r requirements.txt\n",
    "!pip uninstall -y torch  torchvision torchaudio # Remove existing pytorch install.\n",
    "!pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 # Install pytorch for cuda 11.3\n",
    "\n",
    "import os\n",
    "if activate_xformers:\n",
    "    print('Installing xformers...')\n",
    "    import subprocess\n",
    "    def download_release(url):\n",
    "        binary = 'xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl' # have to save the binary as a specific name that pip likes\n",
    "        tmp_dir = subprocess.check_output(['mktemp', '-d']).decode('ascii').strip('\\n')\n",
    "        !wget \"{url}\" -O \"{tmp_dir}/{binary}\"\n",
    "        return os.path.join(tmp_dir, binary)\n",
    "\n",
    "    # Set up pip packages\n",
    "    s = subprocess.getoutput('nvidia-smi')\n",
    "    if 'A4000' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A4000-Oct-28-2022/a4000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'A5000' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A5000-Nov-1-2022/a5000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'A6000' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A6000-Nov-1-2022/a6000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'P5000' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/P5000-Nov-1-2022/p5000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'RTX 4000' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/RTX-4000-Nov-1-2022/rtx4000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'RTX 5000' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/RTX-5000-Nov-1-2022/rtx5000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'A100' in s:\n",
    "        xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A100-Nov-1-2022/a100-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    elif 'M4000' in s:\n",
    "        print('xformers for M4000 hasn\\'t been built yet.')\n",
    "        # xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A100-Nov-1-2022/a100-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
    "    else:\n",
    "        print('GPU not matched to xformers binary so a one-size-fits-all binary was installed. If you have any issues, please build xformers using the Tools block below.')\n",
    "        xformers_whl = download_release('https://raw.githubusercontent.com/Cyberes/xformers-compiled/main/various/xformers-0.0.14.dev0-cp37-cp37m-linux_x86_64.whl')\n",
    "    !pip install --force-reinstall \"{xformers_whl}\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7076d849-dd45-491d-9e6c-473ed1bdbc6e",
   "metadata": {
    "tags": []
   },
   "source": [
    "# 1-3.Accelerate config作成  \n",
    "導入時初回のみターミナルから実行する。  \n",
    "対話型で選択肢に回答する形式なのでターミナルから実行  \n",
    " cd /notebooks/sd-scripts  \n",
    " accelerate config  \n",
    "質問回答後下記メッセージが出たら完了  \n",
    "accelerate configuration saved at /root/.cache/huggingface/accelerate/default_config.yaml "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf57b0ce-882c-415c-9d80-a923a7026124",
   "metadata": {
    "tags": []
   },
   "source": [
    "# 1-4.accelerate configファイルをsd-scriptsディレクトリにコピーする\n",
    "導入時初回のみ実行する  \n",
    "1.3で作ったコンフィグファイルを永続ストレージにコピーする"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9bbd243b-75d3-4492-9bac-196faf55ee97",
   "metadata": {},
   "outputs": [],
   "source": [
    "!cp -r /root/.cache/huggingface/accelerate/ /notebooks/sd-scripts/accelerate/"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "648e5671-b153-4549-96c8-88afb204b3e4",
   "metadata": {},
   "source": [
    "## RUNNING"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "730c4e1b-308f-438c-95a8-e26c671055f5",
   "metadata": {
    "tags": []
   },
   "source": [
    "# 2-0.Dataset Setting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "569d34de-15db-46f4-9af4-7acbfc98e5c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "#起動時。学習素材変更時実行する\n",
    "#Learning checkpointName .ckpt\n",
    "model_file_name = \"wd-1-4-anime_e1.ckpt\" #@param {'type' : 'string'}  \n",
    "\n",
    "model_storage_dir =\"/notebooks/storage/models\"\n",
    "\n",
    "model_file_path = f\"{model_storage_dir}/{model_file_name}\"\n",
    "\n",
    "# ===================================================================================================\n",
    "# 正規化データ クラス名\n",
    "reg_count = 1 #@param {type: \"integer\"}\n",
    "reg_class =\"girl\" #@param {type: \"string\"}\n",
    "\n",
    "#学習元データ トークン(インスタンス)名、クラス名\n",
    "train_count = 20 #@param {type: \"integer\"} 1epoch=学習素材 × カウント数のステップを回す(webui版で10の部分)\n",
    "train_token = \"nahida\" #@param {type: \"string\"}\n",
    "train_class = \"girl\" #@param {type: \"string\"}\n",
    "\n",
    "storage_train_dir = \"/notebooks/storage/atelier/dataset/1024_nahidav3\" #@param {type: \"string\"}\n",
    "storage_class_dir = \"/notebooks/storage/atelier/dataset/Classification\" #@param {type: \"string\"}\n",
    "\n",
    "# ===================================================================================================\n",
    "# Save variables to Jupiter's temp storage so we can access it even if the kernel restarts.\n",
    "%store model_storage_dir model_file_path reg_count reg_class train_count train_token train_class storage_train_dir storage_class_dir"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b017ace2-cd08-427a-89d5-28ad8f7dbfc5",
   "metadata": {},
   "source": [
    "# 2-1 Dreambooth フォルダ削除  \n",
    "学習結果を消すので注意  \n",
    "※学習画像データは消さない  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5aa4b00-b54d-4f5f-a0da-5153a86c1f87",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 学習結果を消すので注意\n",
    "%cd /notebooks/\n",
    "\n",
    "import os\n",
    "\n",
    "def delete_dreambooth_folder():\n",
    "  # Check if the directory already exists\n",
    "  if os.path.isdir('/notebooks/dreambooth'):\n",
    "    %rm -r /notebooks/dreambooth\n",
    "    print(\"dreambooth dataset folder deleted done!!\")\n",
    "  else:\n",
    "    print(\"dreambooth dataset folder none\")\n",
    "\n",
    "# Delete Dreamboothe Dataset folder\n",
    "delete_dreambooth_folder()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5a27b535-ccd3-40cc-86b0-cab5cd3d63b7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 起動時、学習素材変更時実行する\n",
    "#@title Create train and reg folder based on description above\n",
    "%store -r model_storage_dir model_file_path  reg_count reg_class train_count train_token train_class storage_train_dir storage_class_dir\n",
    "\n",
    "# Import the os and shutil modules\n",
    "import os\n",
    "import shutil\n",
    "\n",
    "# Change the current working directory to /content\n",
    "%cd /notebooks\n",
    "\n",
    "# Define the dreambooth_directory variable\n",
    "dreambooth_directory = \"/notebooks/dreambooth\"\n",
    "\n",
    "# Check if the dreambooth directory already exists\n",
    "if os.path.isdir(dreambooth_directory):\n",
    "  # If the directory exists, do nothing\n",
    "  pass\n",
    "else:\n",
    "  # If the directory does not exist, create it\n",
    "  os.mkdir(dreambooth_directory)\n",
    "\n",
    "#@markdown ### Define the reg_folder variable\n",
    "#reg_count = 1 #@param {type: \"integer\"}\n",
    "#reg_class =\"kasakai_hikaru\" #@param {type: \"string\"}\n",
    "reg_folder = str(reg_count) + \"_\" + reg_class\n",
    "\n",
    "# Define the reg_directory variable\n",
    "reg_directory = f\"{dreambooth_directory}/reg_{reg_class}\"\n",
    "\n",
    "# Check if the reg directory already exists\n",
    "if os.path.isdir(reg_directory):\n",
    "  # If the directory exists, do nothing\n",
    "  pass\n",
    "else:\n",
    "  # If the directory does not exist, create it\n",
    "  os.mkdir(reg_directory)\n",
    "\n",
    "# Define the reg_folder_directory variable\n",
    "reg_folder_directory = f\"{reg_directory}/{reg_folder}\"\n",
    "\n",
    "# Check if the reg_folder directory already exists\n",
    "if os.path.isdir(reg_folder_directory):\n",
    "  # If the directory exists, do nothing\n",
    "  pass\n",
    "else:\n",
    "  # If the directory does not exist, create it\n",
    "  #os.mkdir(reg_folder_directory)\n",
    "  os.symlink(storage_class_dir, reg_folder_directory)\n",
    "\n",
    "#@markdown ### Define the train_folder variable\n",
    "#train_count = 3300 #@param {type: \"integer\"}\n",
    "#train_token = \"sls\" #@param {type: \"string\"}\n",
    "#train_class = \"kasakai_hikaru\" #@param {type: \"string\"}\n",
    "train_folder = str(train_count) + \"_\" + train_token + \"_\" + train_class\n",
    "\n",
    "# Define the train_directory variable\n",
    "train_directory = f\"{dreambooth_directory}/train_{train_class}\"\n",
    "\n",
    "# Check if the train directory already exists\n",
    "if os.path.isdir(train_directory):\n",
    "  # If the directory exists, do nothing\n",
    "  pass\n",
    "else:\n",
    "  # If the directory does not exist, create it\n",
    "  os.mkdir(train_directory)\n",
    "    \n",
    "# Define the train_folder_directory variable\n",
    "train_folder_directory = f\"{train_directory}/{train_folder}\"\n",
    "\n",
    "# Check if the train_folder directory already exists\n",
    "if os.path.isdir(train_folder_directory):\n",
    "  # If the directory exists, do nothing\n",
    "  pass\n",
    "else:\n",
    "  # If the directory does not exist, create it\n",
    "  #os.mkdir(train_folder_directory)\n",
    "  os.symlink(storage_train_dir, train_folder_directory)\n",
    "  \n",
    "%store train_directory train_folder_directory reg_directory  reg_folder_directory"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1bb54f2f-66a8-4a4f-80c3-a38f6eacd9fe",
   "metadata": {},
   "source": [
    "# Lora Train Start\n",
    "Dreambooth-Loraの学習を実行する  \n",
    "引数の詳細情報は「sd-scripts/train_network.py」のソースを参照  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0b13039-fec7-4002-998a-64429599baca",
   "metadata": {},
   "outputs": [],
   "source": [
    "#@title Training begin Lora\n",
    "%store -r model_storage_dir model_file_path train_directory reg_directory \n",
    "accelerate_config = \"/notebooks/sd-scripts/accelerate/default_config.yaml\"\n",
    "num_cpu_threads_per_process = 8 #@param {'type':'integer'}\n",
    "pre_trained_model_path =model_file_path #@param {'type':'string'}\n",
    "train_data_dir = train_directory #@param {'type':'string'}\n",
    "reg_data_dir = reg_directory #@param {'type':'string'}\n",
    "\n",
    "output_dir =\"/notebooks/dreambooth\" #@param {'type':'string'}\n",
    "train_batch_size = 6 #@param {type: \"slider\", min: 1, max: 10}\n",
    "resolution = \"768,768\" #@param [\"512,512\", \"768,768\"] {allow-input: false}\n",
    "learning_rate =\"1e-4\" #@param {'type':'string'}\n",
    "mixed_precision = \"bf16\" #@param [\"fp16\", \"bf16\"] {allow-input: false}\n",
    "max_train_steps = 3200 #@param {'type':'integer'}\n",
    "save_precision = \"fp16\" #@param [\"float\", \"fp16\", \"bf16\"] {allow-input: false}\n",
    "save_every_n_epochs = 5 #@param {'type':'integer'}\n",
    "use_network_module = \"networks.lora\" #@param {'type':'string'}\n",
    "caption_extension =\".txt\" #@param {'type':'string'}\n",
    "#resme_path ='/notebooks/dreambooth/last-state' #学習再開する場合フォルダを指定する\n",
    "resme_path ='' #学習再開する場合フォルダを指定する\n",
    "resume = f'--resume={resme_path}' if resme_path else '' #@param {'type':'string'}\n",
    "max_token_length = 225 #@param {'type':'integer'}\n",
    "\n",
    "%cd /notebooks/sd-scripts/\n",
    "!accelerate launch --config_file {accelerate_config} --num_cpu_threads_per_process {num_cpu_threads_per_process} train_network.py \\\n",
    "    --v2 \\\n",
    "    --max_token_length={max_token_length} \\\n",
    "    --pretrained_model_name_or_path={pre_trained_model_path} \\\n",
    "    --train_data_dir={train_data_dir} \\\n",
    "    --reg_data_dir={reg_data_dir} \\\n",
    "    --output_dir={output_dir} \\\n",
    "    --prior_loss_weight=1.0 \\\n",
    "    --resolution={resolution} \\\n",
    "    --train_batch_size={train_batch_size}\\\n",
    "    --learning_rate={learning_rate}\\\n",
    "    --max_train_steps={max_train_steps}  \\\n",
    "    --use_8bit_adam \\\n",
    "    --xformers \\\n",
    "    --cache_latents \\\n",
    "    --mixed_precision={mixed_precision} \\\n",
    "    --gradient_checkpointing \\\n",
    "    --save_every_n_epochs={save_every_n_epochs} \\\n",
    "    --enable_bucket \\\n",
    "    --network_module={use_network_module} \\\n",
    "    --caption_extension={caption_extension} \\\n",
    "    --save_state {resume}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "371b43fe-9293-4f1e-a026-72b3f94df6e2",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true,
    "tags": []
   },
   "source": [
    "# 3.Dataset Labeling (おまけ)\n",
    "FineTune用 Lora学習には使わない。WD14taggerは使うかも"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "05528d73-883e-4365-a1e7-d82cf61eee6e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 3-1.BLIPでキャプションファイル(.caption)を学習素材と同じ場所に作成する\n",
    "%store -r storage_train_dir\n",
    "%cd /notebooks/sd-scripts/\n",
    "batch_size = 8 #@param {'type':'integer'}\n",
    "\n",
    "!python finetune/make_captions.py --batch_size {batch_size} {storage_train_dir}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7c58ed68-fc08-4d1a-9630-d14c6b0b3db8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 3-2 WD1.4 taggerでタグテキスト(.txt)を学習素材と同じ場所に作成する\n",
    "#@title Start WD 1.4 Tagger\n",
    "%store -r storage_train_dir\n",
    "%cd /notebooks/sd-scripts/\n",
    "\n",
    "batch_size = 8 #@param {'type':'integer'}\n",
    "caption_extension = \".txt\" #@param [\".txt\",\".caption\"]\n",
    "\n",
    "!python finetune/tag_images_by_wd14_tagger.py \\\n",
    "  {storage_train_dir} \\\n",
    "  --batch_size {batch_size} \\\n",
    "  --caption_extension {caption_extension}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4aef070-b6f2-4346-a553-888bb4404e83",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 3-3 キャプションとタグを結合して1つのファイルにまとめる(meta_clean.json作成)\n",
    "#@title Create meta_clean.json \n",
    "# Change the working directory\n",
    "%store -r storage_train_dir\n",
    "%cd /notebooks/sd-scripts/\n",
    "\n",
    "#@markdown ### Define Parameters\n",
    "meta_cap_dd = \"/notebooks/dreambooth/meta_cap_dd.json\" \n",
    "meta_cap = \"/notebooks/dreambooth/meta_cap.json\" \n",
    "meta_clean = \"/notebooks/dreambooth/meta_clean.json\" #@param {'type':'string'}\n",
    "\n",
    "# Check if the train_data_dir exists and is a directory\n",
    "if os.path.isdir(storage_train_dir):\n",
    "  # Check if there are any .caption files in the train_data_dir\n",
    "  if any(file.endswith('.caption') for file in os.listdir(storage_train_dir)):\n",
    "    # Create meta_cap.json from captions\n",
    "    !python finetune/merge_captions_to_metadata.py \\\n",
    "      {storage_train_dir} \\\n",
    "      {meta_cap}\n",
    "\n",
    "  # Check if there are any .txtn files in the train_data_dir\n",
    "  if any(file.endswith('.txt') for file in os.listdir(storage_train_dir)):\n",
    "    # Create meta_cap_dd.json from tags\n",
    "    !python finetune/merge_dd_tags_to_metadata.py \\\n",
    "      {storage_train_dir} \\\n",
    "      {meta_cap_dd}\n",
    "else:\n",
    "  print(\"train_data_dir does not exist or is not a directory.\")\n",
    "\n",
    "# Merge meta_cap.json to meta_cap_dd.json\n",
    "if os.path.exists(meta_cap) and os.path.exists(meta_cap_dd):\n",
    "  !python finetune/merge_dd_tags_to_metadata.py \\\n",
    "    {storage_train_dir} \\\n",
    "    --in_json {meta_cap} \\\n",
    "    {meta_cap_dd}\n",
    "\n",
    "# Clean meta_cap_dd.json and store it to meta_clean.json\n",
    "if os.path.exists(meta_cap_dd):\n",
    "  # Clean captions and tags in meta_cap_dd.json and store the result in meta_clean.json\n",
    "  !python finetune/clean_captions_and_tags.py \\\n",
    "    {meta_cap_dd} \\\n",
    "    {meta_clean}\n",
    "elif os.path.exists(meta_cap):\n",
    "  # If meta_cap_dd.json does not exist, clean meta_cap.json and store the result in meta_clean.json\n",
    "  !python finetune/clean_captions_and_tags.py \\\n",
    "    {meta_cap} \\\n",
    "    {meta_clean}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "067d56ab-cc17-4acf-af5c-3913c56c722a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 3-4 latentsの事前取得\n",
    "#@title Aspect Ratio Bucketing\n",
    "%store -r storage_train_dir model_file_path\n",
    "\n",
    "# Change working directory\n",
    "%cd /notebooks/sd-scripts/\n",
    "\n",
    "#@markdown ### Define parameters\n",
    "\n",
    "#model_dir = \"runwayml/stable-diffusion-v1-5\" #@param {'type' : 'string'} \n",
    "model_dir = model_file_path #@param {'type' : 'string'} \n",
    "batch_size = 4 #@param {'type':'integer'}\n",
    "max_resolution = \"768,768\" #@param [\"512,512\", \"768,768\"] {allow-input: false}\n",
    "mixed_precision = \"bf16\" #@param [\"no\", \"fp16\", \"bf16\"] {allow-input: false}\n",
    "meta_clean = \"/notebooks/dreambooth/meta_clean.json\"\n",
    "meta_lat = \"/notebooks/dreambooth/meta_lat.json\"\n",
    "\n",
    "\n",
    "# Run script to prepare buckets and latents\n",
    "!python finetune/prepare_buckets_latents.py \\\n",
    "  {storage_train_dir} \\\n",
    "  {meta_clean} \\\n",
    "  {meta_lat} \\\n",
    "  {model_dir} \\\n",
    "  --batch_size {batch_size} \\\n",
    "  --max_resolution {max_resolution} \\\n",
    "  --mixed_precision {mixed_precision}\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}