--- license: mit tags: - generated_from_trainer datasets: - xsum metrics: - rouge base_model: facebook/bart-large-cnn model-index: - name: theus_concepttagger results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: xsum type: xsum config: default split: validation args: default metrics: - type: rouge value: 34.8663 name: Rouge1 - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 24.57 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=namanpundir/theus_concepttagger name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 25.5 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=namanpundir/theus_concepttagger name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 23.12 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=namanpundir/theus_concepttagger name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.25 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=namanpundir/theus_concepttagger name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 48.3 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=namanpundir/theus_concepttagger name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=namanpundir/theus_concepttagger name: Open LLM Leaderboard --- # theus_concepttagger This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6249 - Rouge1: 34.8663 - Rouge2: 15.1526 - Rougel: 26.1224 - Rougelsum: 26.5164 - Gen Len: 62.4475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4096 | 1.0 | 12753 | 1.6249 | 34.8663 | 15.1526 | 26.1224 | 26.5164 | 62.4475 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_namanpundir__theus_concepttagger) | Metric |Value| |---------------------------------|----:| |Avg. |28.29| |AI2 Reasoning Challenge (25-Shot)|24.57| |HellaSwag (10-Shot) |25.50| |MMLU (5-Shot) |23.12| |TruthfulQA (0-shot) |48.25| |Winogrande (5-shot) |48.30| |GSM8k (5-shot) | 0.00|