--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** shiki07 - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # how to use 本アダプタを用いて,ELYZA-tasks-100-TVの出力を得る推論コードです.Jupyter Notebook環境を想定しています. ## 使用ライブラリのインストール ```bash !pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install -U peft ``` ## 準備 ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel import torch from tqdm import tqdm import json HF_TOKEN = "Hugging Face Token" #Write権限のHFトークンを設定 base_model_id = "llm-jp/llm-jp-3-13b" adapter_id = "shiki07/llm-jp-3-13b-it_lora" eval_data_path = "./elyza-tasks-100-TV_0.jsonl" # elyza-tasks-100-TVのパスを指定 ``` ## 時間がかかります. ```python # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) # Load model model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, token = HF_TOKEN) model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) ``` ## データ読み込みと推論 ```python # データセットの読み込み。 datasets = [] with open(eval_data_path, "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # llmjp results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) import re jsonl_id = re.sub(".*/", "", adapter_id) with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n') ``` 以上です. .jsonlファイルが推論結果のファイルになります. # Instruction tuning The models have been fine-tuned on the following datasets. [日本語インストラクションデータ:ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)