File size: 1,740 Bytes
0051261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: beomi/kcbert-base
tags:
- generated_from_trainer
datasets:
- nsmc
metrics:
- accuracy
model-index:
- name: ai.keepit
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: nsmc
      type: nsmc
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.90204
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ai.keepit

This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co./beomi/kcbert-base) on the nsmc dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3046
- Accuracy: 0.9020

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2715        | 1.0   | 9375  | 0.2604          | 0.8957   |
| 0.2137        | 2.0   | 18750 | 0.2677          | 0.9003   |
| 0.1655        | 3.0   | 28125 | 0.3046          | 0.9020   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3