--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-ner-en results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.9094335178424214 - name: Recall type: recall value: 0.9164490861618799 - name: F1 type: f1 value: 0.9129278240822842 - name: Accuracy type: accuracy value: 0.979076030660866 language: - en library_name: transformers --- # bert-large-uncased-ner-en This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1402 - Precision: 0.9094 - Recall: 0.9164 - F1: 0.9129 - Accuracy: 0.9791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0787 | 1.0 | 1756 | 0.1122 | 0.8932 | 0.9046 | 0.8989 | 0.9761 | | 0.0406 | 2.0 | 3512 | 0.1312 | 0.9042 | 0.9124 | 0.9083 | 0.9777 | | 0.0177 | 3.0 | 5268 | 0.1402 | 0.9094 | 0.9164 | 0.9129 | 0.9791 | ### Framework versions - Transformers 4.27.2 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2