myklicious commited on
Commit
026c780
·
1 Parent(s): 52c3b5f

Upload PPO LunarLander-v2 trained agent - continued 500k more steps

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -196.96 +/- 65.54
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 8
43
- 'num_steps': 512
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.985
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 8
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'myklicious/PPO-LunarLander-v2'
58
- 'batch_size': 4096
59
- 'minibatch_size': 1024}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 268.40 +/- 21.21
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ea41b8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ea41bd040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ea41bd0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ea41bd160>", "_build": "<function ActorCriticPolicy._build at 0x7f9ea41bd1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9ea41bd280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ea41bd310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9ea41bd3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ea41bd430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ea41bd4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ea41bd550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9ea41bb120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670954585048476695, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIC1z73DLV+6GR/JuGniyrOZkPA6Cj3sNwAAgD8AAIA/RgNcvhsn97xpRbe8R5hGu5OCWT4UkhY8AACAPwAAgD9N5I894drsOedQsbvdSiA2Zn6kOz1YmrUAAIA/AAAAABoUDr1SkqW7jqEuvdY3Yjxm4O08pYVCvQAAgD8AAIA/TVIcPuyK8rsDMdQ7vRUAuhtpV704XNe6AACAPwAAgD/Af9U9oD+AP0oNuT295A2/U+rKPbZUf7wAAAAAAAAAAGZIjL2UWHk+5dOmPEqgUL5vbgS8KIf/uwAAAAAAAAAAmnZbPRQAnrqW4UM6/jwbNRnMl7kmXmG5AACAPwAAAACN5qW+lTY9P34tn7s0qJ2+GhItvjQqmj0AAAAAAAAAAJ1Ki76qcE0/zWMevd71iL7Gy06+Y9kXPgAAAAAAAAAAwDyEPVxHZLrAh+o6QlshNuuMNzs7Kwi6AACAPwAAAACzjxo9KXQAurbw9LiJABUyiZoMu11HEDgAAIA/AACAP2bwVTxL8F4/SpyZPakb7r66TfM8SKoePQAAAAAAAAAAM7HWPEhTgrq5vMO2C6m2sQkbkjpmkec1AACAPwAAgD82HY8+J406P542+D09Gtu+DD1kPkUK07wAAAAAAAAAAO6wg76KBWw/NvRevoculb7KCla+qTSuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4L4OnDMVakCUhpRSlIwBbJRN7QGMAXSUR0CTuA15B1LbdX2UKGgGaAloD0MIfSWQEjvib0CUhpRSlGgVTWoBaBZHQJO4f5wfhdd1fZQoaAZoCWgPQwivWpnwy8BxQJSGlFKUaBVN6gFoFkdAk81LgXMyJ3V9lChoBmgJaA9DCIzc09UdP25AlIaUUpRoFU1BAWgWR0CTzX7hNucddX2UKGgGaAloD0MIMSjTaPInbUCUhpRSlGgVTVMBaBZHQJPNpYigTRJ1fZQoaAZoCWgPQwjBxB9FHd1vQJSGlFKUaBVNBgJoFkdAk83d3np0OnV9lChoBmgJaA9DCP5itmQV6nBAlIaUUpRoFU1TAWgWR0CTzugk1MufdX2UKGgGaAloD0MIouwt5fyrcUCUhpRSlGgVTSEBaBZHQJPPC2phnap1fZQoaAZoCWgPQwhqh78mayFzQJSGlFKUaBVNKQFoFkdAk9AIJiRW93V9lChoBmgJaA9DCJtwr8zb93BAlIaUUpRoFU1CAWgWR0CT0D3evZAZdX2UKGgGaAloD0MIuaZAZmcacECUhpRSlGgVTUIBaBZHQJPREFjd56d1fZQoaAZoCWgPQwgE4nX9AjlvQJSGlFKUaBVNGQFoFkdAk9OEU47zTXV9lChoBmgJaA9DCCo5J/YQsnFAlIaUUpRoFU0eAWgWR0CT1C2mpEQYdX2UKGgGaAloD0MIATPfwU9ucECUhpRSlGgVS/1oFkdAk9UIIKMNt3V9lChoBmgJaA9DCM064/tiDnBAlIaUUpRoFU1aAWgWR0CT1USgoPTYdX2UKGgGaAloD0MIHEXWGgoHcECUhpRSlGgVS/xoFkdAk9VnD7655XV9lChoBmgJaA9DCMTNqWQAe3BAlIaUUpRoFU2FAWgWR0CT1ZmyxA0LdX2UKGgGaAloD0MIwCUA/xTgb0CUhpRSlGgVTREBaBZHQJPV5mWdEst1fZQoaAZoCWgPQwg91/fh4MtwQJSGlFKUaBVNZgFoFkdAk9YuY+jdpXV9lChoBmgJaA9DCJCkpIfhcnFAlIaUUpRoFU1ZAWgWR0CT2GRGtp22dX2UKGgGaAloD0MIat/cXz1pcUCUhpRSlGgVTToBaBZHQJPYpFb3XZp1fZQoaAZoCWgPQwgPDvYmxslwQJSGlFKUaBVNWAFoFkdAk9m2ykbgj3V9lChoBmgJaA9DCJFCWfh64HFAlIaUUpRoFU1BAWgWR0CT2i9KEnLJdX2UKGgGaAloD0MIZtgo6zcebECUhpRSlGgVTU0BaBZHQJPb4K9f1Hx1fZQoaAZoCWgPQwhubeF5aV5xQJSGlFKUaBVNiwFoFkdAk90vB7/n4nV9lChoBmgJaA9DCDHsMCb9EnBAlIaUUpRoFU0uAWgWR0CT3Ywnpjc3dX2UKGgGaAloD0MIstr8v+oXc0CUhpRSlGgVTSIBaBZHQJPdw/LTx5N1fZQoaAZoCWgPQwjwMsNGWQlxQJSGlFKUaBVNBgFoFkdAk93vJmuklHV9lChoBmgJaA9DCIxppnsdVHFAlIaUUpRoFU0TAWgWR0CT3gX6InBtdX2UKGgGaAloD0MIycuaWCAbcUCUhpRSlGgVTR0BaBZHQJPehjUd7v51fZQoaAZoCWgPQwjKNJpcTBlxQJSGlFKUaBVNCAFoFkdAk97HOGCZnnV9lChoBmgJaA9DCGVtUzzuWHBAlIaUUpRoFU0lAWgWR0CT3wI2fkFOdX2UKGgGaAloD0MI9fOmItW0cUCUhpRSlGgVTTwBaBZHQJPf12KVII51fZQoaAZoCWgPQwiM2CeAIm5yQJSGlFKUaBVL6mgWR0CT4CSvC/GmdX2UKGgGaAloD0MIIlM+BFVSW0CUhpRSlGgVTegDaBZHQJPhQ6mwaBJ1fZQoaAZoCWgPQwjZsnxdxulwQJSGlFKUaBVL82gWR0CT4ci3ocJddX2UKGgGaAloD0MIAJF++zr5bUCUhpRSlGgVTQcBaBZHQJPh7LSuyNZ1fZQoaAZoCWgPQwhPeXQj7ChxQJSGlFKUaBVNVQFoFkdAk+LngDRtxnV9lChoBmgJaA9DCLAEUmIXBnJAlIaUUpRoFU0NAWgWR0CT4/DM/yG0dX2UKGgGaAloD0MIVpqUgm6ccUCUhpRSlGgVS+xoFkdAk+ShA4XGfnV9lChoBmgJaA9DCOAT61Q5K3JAlIaUUpRoFU0kAWgWR0CT5j36yjYadX2UKGgGaAloD0MIPGnhskrjckCUhpRSlGgVTTQBaBZHQJPmdF1B+nZ1fZQoaAZoCWgPQwghzO1eLltwQJSGlFKUaBVNFQFoFkdAk+cf2GqPwXV9lChoBmgJaA9DCLDjv0CQY25AlIaUUpRoFU0fAWgWR0CT5yiDujREdX2UKGgGaAloD0MInKIjufxjTUCUhpRSlGgVS6xoFkdAk+eBC6YmcHV9lChoBmgJaA9DCCv52F2gcG9AlIaUUpRoFU1cAWgWR0CT6JYSg5BDdX2UKGgGaAloD0MIbcfUXVlxb0CUhpRSlGgVTRMBaBZHQJPow1l5GBp1fZQoaAZoCWgPQwi77q1ITHJAQJSGlFKUaBVLsGgWR0CT6MO0svqUdX2UKGgGaAloD0MIz/V9OEi9Y0CUhpRSlGgVTegDaBZHQJPphdszl911fZQoaAZoCWgPQwhMbamDvNtyQJSGlFKUaBVNWwFoFkdAk+mc6/7BPHV9lChoBmgJaA9DCH+D9uqjEXBAlIaUUpRoFU0jAWgWR0CT6mg2Ifr9dX2UKGgGaAloD0MIsi0DzlJfbUCUhpRSlGgVTV8BaBZHQJPqrtnf2sd1fZQoaAZoCWgPQwgCLV3BtoBvQJSGlFKUaBVN3gFoFkdAk+wWjwhGIHV9lChoBmgJaA9DCIqtoGnJ5XBAlIaUUpRoFU1gAWgWR0CT/3NXo1UEdX2UKGgGaAloD0MI/YSzW0uYbkCUhpRSlGgVTQIBaBZHQJP/gXSBshx1fZQoaAZoCWgPQwgHtd/ayaBxQJSGlFKUaBVNGAFoFkdAk/+BMi8nNXV9lChoBmgJaA9DCBnG3SCaVHBAlIaUUpRoFU0ZAWgWR0CUAVTvy9VWdX2UKGgGaAloD0MI2Ne61MhQckCUhpRSlGgVTQUBaBZHQJQBfRMN+b51fZQoaAZoCWgPQwiM9KJ2P0pyQJSGlFKUaBVNAQFoFkdAlAGt87ZFonV9lChoBmgJaA9DCPYINUNqK3NAlIaUUpRoFU0fAWgWR0CUAisXBP9DdX2UKGgGaAloD0MIOEiI8gUzRkCUhpRSlGgVS7JoFkdAlAJYPXkHU3V9lChoBmgJaA9DCP0QGyzcAHNAlIaUUpRoFU09AWgWR0CUAndc0LtvdX2UKGgGaAloD0MIZW1TPK77cECUhpRSlGgVTQABaBZHQJQCpgc94eN1fZQoaAZoCWgPQwitTzkmC9dxQJSGlFKUaBVNCwFoFkdAlALF+y7f53V9lChoBmgJaA9DCC6rsBkgVnBAlIaUUpRoFU0aAWgWR0CUAz1lGwzMdX2UKGgGaAloD0MIrmNccXHbcUCUhpRSlGgVTRYBaBZHQJQDsIw/PgN1fZQoaAZoCWgPQwj+8V61MoJuQJSGlFKUaBVNFwFoFkdAlAPFaB7NS3V9lChoBmgJaA9DCJ5hakvdDXBAlIaUUpRoFUvxaBZHQJQFfPhQ3xZ1fZQoaAZoCWgPQwhcqz3shXxtQJSGlFKUaBVL/2gWR0CUBdxGUfPpdX2UKGgGaAloD0MI93e2R2/aR0CUhpRSlGgVS6FoFkdAlAawUpNKy3V9lChoBmgJaA9DCPBQFOjTGXFAlIaUUpRoFU08AWgWR0CUB5v/io87dX2UKGgGaAloD0MINq5/16cxcUCUhpRSlGgVS/5oFkdAlAgH3g1m8XV9lChoBmgJaA9DCECGjh2USHBAlIaUUpRoFU0NAWgWR0CUCFo2GZeBdX2UKGgGaAloD0MIRpc3h+tvb0CUhpRSlGgVTX0BaBZHQJQJDU1AJLN1fZQoaAZoCWgPQwgN38K6cYRyQJSGlFKUaBVNHgFoFkdAlAk8zdk8R3V9lChoBmgJaA9DCB+DFacaBHJAlIaUUpRoFU0uAWgWR0CUCpvK2a2GdX2UKGgGaAloD0MIEXAIVersckCUhpRSlGgVTVUBaBZHQJQLgGFBY3h1fZQoaAZoCWgPQwg82GK3T/5vQJSGlFKUaBVNFwFoFkdAlAvMlw97nnV9lChoBmgJaA9DCBfTTPe6GnNAlIaUUpRoFU1KAWgWR0CUC8zru6VddX2UKGgGaAloD0MICHQmbarmcUCUhpRSlGgVTT8BaBZHQJQM02ZRbbF1fZQoaAZoCWgPQwiHGoUkc3FyQJSGlFKUaBVNWgFoFkdAlAz/CuU2UHV9lChoBmgJaA9DCNSCF30Fx3JAlIaUUpRoFU0FAWgWR0CUDa9MsYl6dX2UKGgGaAloD0MIKowtBLnEcECUhpRSlGgVTRQBaBZHQJQQrP2PDHh1fZQoaAZoCWgPQwikiAyrOGRwQJSGlFKUaBVNIgFoFkdAlBC3eSB9TnV9lChoBmgJaA9DCB6oUx7dRXJAlIaUUpRoFU1PAWgWR0CUEUXAM2FWdX2UKGgGaAloD0MIls/yPDgNcECUhpRSlGgVTSoBaBZHQJQSnrD63y91fZQoaAZoCWgPQwjt0obDUg1vQJSGlFKUaBVNRQFoFkdAlBLDBMzuW3V9lChoBmgJaA9DCE8/qIsUJm5AlIaUUpRoFU0UAWgWR0CUE7EgW8AadX2UKGgGaAloD0MI0PBmDV74b0CUhpRSlGgVTRMBaBZHQJQUogQpWmx1fZQoaAZoCWgPQwgr3sg8ci5xQJSGlFKUaBVNEwFoFkdAlBTysXBP9HV9lChoBmgJaA9DCMOedvgr4XBAlIaUUpRoFU0yAWgWR0CUFgmNipeedX2UKGgGaAloD0MIFM0DWKSPcECUhpRSlGgVTTIBaBZHQJQXTTH80k51fZQoaAZoCWgPQwiAft+/+bNtQJSGlFKUaBVNMgFoFkdAlBeKMJhOQHV9lChoBmgJaA9DCAd+VMN+Hm9AlIaUUpRoFUv/aBZHQJQZtagVXV91fZQoaAZoCWgPQwj6K2SuDJ9oQJSGlFKUaBVN6ANoFkdAlBv5PM0P6XV9lChoBmgJaA9DCKvQQCwbFW9AlIaUUpRoFU0NAWgWR0CUHFHFxXGPdX2UKGgGaAloD0MIhugQOFK5cUCUhpRSlGgVTRcBaBZHQJQc1dMTN+t1fZQoaAZoCWgPQwjSAN4CyYtyQJSGlFKUaBVNSQNoFkdAlB0GXXyy2XV9lChoBmgJaA9DCP0RhgHL9HJAlIaUUpRoFU1IAWgWR0CUHRVN5+pgdX2UKGgGaAloD0MIzefc7fpIb0CUhpRSlGgVTQoBaBZHQJQdSbONYKZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4be6c43e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4be6c43ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4be6c43f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4be6c47040>", "_build": "<function ActorCriticPolicy._build at 0x7f4be6c470d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4be6c47160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4be6c471f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4be6c47280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4be6c47310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4be6c473a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4be6c47430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4be6c474c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4be6c44a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682807386104681055, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADM7aTyR4hc/EuIFvoW6sr7HWUG8/YegPAAAAAAAAAAAwBXCPU58oz/RIDI/laELv222BD32OU4+AAAAAAAAAACVupi+vwVGP1GxHL7nW/S+x+K+vhMwhD4AAAAAAAAAAJoXP735CKg/KqVevgG59L4vbZ+9ZAUMvQAAAAAAAAAAGsEFvcNNBrrR/5e1705aLkgzLrscXKw0AACAPwAAAAAzL6U7KRxmPQYre76l8IS+F5obvjiJZj0AAAAAAAAAADOTrTp5dLk/KDwmPUJrwz4dqNG7XmFjvQAAAAAAAAAAZpntvEiXm7qZhJc3cfmLMlFAD7qH3q62AACAPwAAgD+aD169PcUWuw4geLopqBQ8O/DgO4wYBr0AAIA/AACAP2ZmNbpc81G6lrdJshNr6zBUNT26cqJJMwAAgD8AAIA/8yCyPTUxsz965g4/d+hVvgT5iT3Tdag+AAAAAAAAAADNqPI7bEmBu3NcQzw17Io89fCevGo9bj0AAIA/AACAP8DAgT0cYhS8viKYPcDyHT0VGJ290rT+PQAAgD8AAIA/mssFPHEEXbsFc2s76/mRPDYiirzVcHo9AACAPwAAgD8AIw49AS2HPca6o7wwo5G+nqi+u3duHj0AAAAAAAAAADP69T1nBo8+bdiKvrcIrr4UceU7IrqhvAAAAAAAAAAA6gCjPuoX9T5bCCe+S8m7vm8mSz6004K9AAAAAAAAAADzR20+lJSKPxeFEj+dr7O+AUCiPq3mUT4AAAAAAAAAAADkiD1Vmn8+o9XavZRXkL6Zxh49ncqYPAAAAAAAAAAAmjXoPd5emj82thA/wGDAvnoz5j3yspE+AAAAAAAAAACAR9s9E2g1P/buqzw9c8m+Ow6vPWzrkL0AAAAAAAAAACYqJ77snxY+vU0SPhlOuL7wwWq83vGQPAAAAAAAAAAAgNNmPUPXaLywKDU92wQOvtt0Mr2t2gu/AACAPwAAgD9mn6A8QbSuP2+cHT6MdaO+YkzyPH6XDz4AAAAAAAAAADM9qjwjfys9MvmDvZoklL6gBDW9eKg+PAAAAAAAAAAAmqMTPJFNgj+qkG+9hXgIv0gpfT0ewVY8AAAAAAAAAAAzCQe94QSGut0xVbRQJQywAHsIumqInDMAAIA/AACAP3PtWT4JPx49ehR/OzujCr1MY6w+h/YGvgAAAAAAAAAAzbRqu1Igt7kzw1k38NWVMlBtELr7fX22AACAPwAAgD+amJ+8jy4Jun77lrU8jbsvU7fiu7D3tTQAAIA/AACAPwD6er19drk/F4kTv1YqST2r49C7RxEgvgAAAAAAAAAAhr92vnzlaD8QpWa+imIKv0aNg75FFew9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8FLqkjEDcUCUhpRSlIwBbJRNBgGMAXSUR0CU0JHvc8DCdX2UKGgGaAloD0MI8SkAxvPScECUhpRSlGgVS/toFkdAlNDj3/Pw/nV9lChoBmgJaA9DCBDLZg7JT3FAlIaUUpRoFU0hAWgWR0CU0OwOvt+kdX2UKGgGaAloD0MITihEwGHsckCUhpRSlGgVTWwBaBZHQJTRNvZRKpV1fZQoaAZoCWgPQwjCMjZ0s0xuQJSGlFKUaBVL+2gWR0CU0YCHARChdX2UKGgGaAloD0MICisVVBQgcECUhpRSlGgVTRIBaBZHQJTRiJ0nw5N1fZQoaAZoCWgPQwieXb71YQdyQJSGlFKUaBVNCwFoFkdAlNGgy6+WW3V9lChoBmgJaA9DCDfEeM3rLHNAlIaUUpRoFU0tAWgWR0CU0ajFAE+xdX2UKGgGaAloD0MI1ULJ5FRPcECUhpRSlGgVS+hoFkdAlNIhWcSXdHV9lChoBmgJaA9DCEDZlCu8S3JAlIaUUpRoFUvzaBZHQJTSQGQjlgd1fZQoaAZoCWgPQwjrOH6oNNpuQJSGlFKUaBVL6mgWR0CU0kFQEZBLdX2UKGgGaAloD0MIZJXSM/08ckCUhpRSlGgVTQEBaBZHQJTSbwVj7Q91fZQoaAZoCWgPQwjB/uvc9IVyQJSGlFKUaBVNFQFoFkdAlNKnIhhYvHV9lChoBmgJaA9DCIDY0qMpN3JAlIaUUpRoFU0KAWgWR0CU00VGTcIrdX2UKGgGaAloD0MIa0QwDi4rcECUhpRSlGgVS+hoFkdAlNNak2xY73V9lChoBmgJaA9DCByxFp+Cx29AlIaUUpRoFU0IAWgWR0CU0+UYsNDudX2UKGgGaAloD0MI95Fbky4OckCUhpRSlGgVS+RoFkdAlNPtqYZ2p3V9lChoBmgJaA9DCL+CNGPRk29AlIaUUpRoFUvoaBZHQJTT7dcjZ+R1fZQoaAZoCWgPQwhv8lt0MutwQJSGlFKUaBVNMAFoFkdAlNP1wT/Q0HV9lChoBmgJaA9DCHh95qyPdHNAlIaUUpRoFUv2aBZHQJTT+72+PBB1fZQoaAZoCWgPQwikpl1Ms0tvQJSGlFKUaBVL5GgWR0CU1EIJZ4fPdX2UKGgGaAloD0MIbF1qhP6dcUCUhpRSlGgVTSYBaBZHQJTUZhuwX691fZQoaAZoCWgPQwgYlGk0ecFxQJSGlFKUaBVNvQFoFkdAlNSpW/8EV3V9lChoBmgJaA9DCCj0+pP4N3FAlIaUUpRoFUvgaBZHQJTVIUeuFHt1fZQoaAZoCWgPQwgL68a7I8hRQJSGlFKUaBVN6ANoFkdAlNWMdYGMXXV9lChoBmgJaA9DCKYnLPFAWnJAlIaUUpRoFUvnaBZHQJTVpB8hLXd1fZQoaAZoCWgPQwi+MQQARx1vQJSGlFKUaBVNDwFoFkdAlNYOloDgZXV9lChoBmgJaA9DCOPHmLuWW3JAlIaUUpRoFU0WAWgWR0CU1j6ciGFjdX2UKGgGaAloD0MIpikCnF66cECUhpRSlGgVS/1oFkdAlNZvoJRfnnV9lChoBmgJaA9DCJ+vWS7b4XJAlIaUUpRoFU0MAWgWR0CU10DDTBqLdX2UKGgGaAloD0MIeZEJ+HWDcECUhpRSlGgVS+ZoFkdAlNfVotcv/XV9lChoBmgJaA9DCLFppRAIF3BAlIaUUpRoFUveaBZHQJTX5qHoHLR1fZQoaAZoCWgPQwhkQPZ6NzxzQJSGlFKUaBVL/GgWR0CU1+bi6xxDdX2UKGgGaAloD0MIjKGcaNeMc0CUhpRSlGgVTREBaBZHQJTYBg3Lmp51fZQoaAZoCWgPQwjZmULntZJsQJSGlFKUaBVL9mgWR0CU2AzEaVD8dX2UKGgGaAloD0MIH9rHCj7zcUCUhpRSlGgVTQgBaBZHQJTYDRPXTVl1fZQoaAZoCWgPQwi+amXCb65xQJSGlFKUaBVNAwFoFkdAlNhd0zTF2nV9lChoBmgJaA9DCH0h5Ly/GnFAlIaUUpRoFUvsaBZHQJTYXWhAWzp1fZQoaAZoCWgPQwhu+N10yztzQJSGlFKUaBVL9mgWR0CU2KR64UeudX2UKGgGaAloD0MITOMXXgkscECUhpRSlGgVS/JoFkdAlNj0Xxe9jHV9lChoBmgJaA9DCLyWkA/6LXFAlIaUUpRoFUv5aBZHQJTZQTFl05l1fZQoaAZoCWgPQwh0KENVjM9wQJSGlFKUaBVNAgFoFkdAlNl+CoS+QHV9lChoBmgJaA9DCJsCmZ0FG3JAlIaUUpRoFUv/aBZHQJTZlFUhmoR1fZQoaAZoCWgPQwigF+5cmGRxQJSGlFKUaBVL52gWR0CU2boXbdrPdX2UKGgGaAloD0MIGVWGcTdYckCUhpRSlGgVTQMBaBZHQJTZ4miQDFJ1fZQoaAZoCWgPQwgEBHP0OF9yQJSGlFKUaBVL4WgWR0CU2hCAMDwIdX2UKGgGaAloD0MIL7/TZAZIcUCUhpRSlGgVTTUBaBZHQJTaKqcVgx91fZQoaAZoCWgPQwhkAn6NZG5wQJSGlFKUaBVL42gWR0CU2oP9kz42dX2UKGgGaAloD0MIZktWRThhcECUhpRSlGgVS/doFkdAlNqYYvWYnnV9lChoBmgJaA9DCHdJnBVRi29AlIaUUpRoFUv3aBZHQJTapvrGBFx1fZQoaAZoCWgPQwhTk+AN6ZxyQJSGlFKUaBVNBgFoFkdAlNr9gWrOq3V9lChoBmgJaA9DCIWVCirqSXFAlIaUUpRoFU0HAWgWR0CU2v4KQaJidX2UKGgGaAloD0MInfNTHEf4cUCUhpRSlGgVTQUBaBZHQJTbRaTwDvF1fZQoaAZoCWgPQwgAOPbsufVwQJSGlFKUaBVNLgFoFkdAlNt/9LpRoHV9lChoBmgJaA9DCKku4GUGU3FAlIaUUpRoFUvzaBZHQJTboYMvysl1fZQoaAZoCWgPQwhdaoR+Ju1yQJSGlFKUaBVL+WgWR0CU3C/r0J4TdX2UKGgGaAloD0MIOrAcIQMfbUCUhpRSlGgVS/loFkdAlNy61G9YfXV9lChoBmgJaA9DCGhYjLpW429AlIaUUpRoFU0PAWgWR0CU3OGHYYixdX2UKGgGaAloD0MIv30dOKfScUCUhpRSlGgVTUsBaBZHQJTdlfTkQwt1fZQoaAZoCWgPQwhupGyR9LFwQJSGlFKUaBVNEQFoFkdAlN3SMo+fRXV9lChoBmgJaA9DCLExryPOvXBAlIaUUpRoFUveaBZHQJTd9cv/R3N1fZQoaAZoCWgPQwhznUZa6otyQJSGlFKUaBVL82gWR0CU3nBEa2nbdX2UKGgGaAloD0MIkGeXb/00cUCUhpRSlGgVS/xoFkdAlN6nlXA/LXV9lChoBmgJaA9DCJRMTu2MdHBAlIaUUpRoFUv9aBZHQJTe3wCr92p1fZQoaAZoCWgPQwgMWd3quV1tQJSGlFKUaBVL8WgWR0CU3uWKMvRJdX2UKGgGaAloD0MIwELmyiDUcECUhpRSlGgVS/toFkdAlN82j4593XV9lChoBmgJaA9DCD+Ne/Mbz3BAlIaUUpRoFU0NAWgWR0CU3z5fMOf/dX2UKGgGaAloD0MIcJUnEDZmckCUhpRSlGgVS9toFkdAlN9FfeDWb3V9lChoBmgJaA9DCLoyqDb4aXJAlIaUUpRoFU0lAWgWR0CU31ZLZi/gdX2UKGgGaAloD0MI9dbAVgnlcECUhpRSlGgVS+doFkdAlN/4lIEr5XV9lChoBmgJaA9DCLSOqibIj3FAlIaUUpRoFU0YAWgWR0CU4F03wTdtdX2UKGgGaAloD0MI0bGDSlw8b0CUhpRSlGgVTTQBaBZHQJTggUM5OrR1fZQoaAZoCWgPQwhyhuKON9JxQJSGlFKUaBVL9WgWR0CU4IizcAR1dX2UKGgGaAloD0MI3sZmR2rPckCUhpRSlGgVS/NoFkdAlOCl3t8eCHV9lChoBmgJaA9DCL2Pozlyl3FAlIaUUpRoFU0ZAWgWR0CU4LrMkhRqdX2UKGgGaAloD0MIPUZ55qUhcUCUhpRSlGgVTYsBaBZHQJThKE7GNrF1fZQoaAZoCWgPQwhRg2kYfvdxQJSGlFKUaBVL7WgWR0CU4SjFQ2uQdX2UKGgGaAloD0MIiNo2jMI8cUCUhpRSlGgVTQEBaBZHQJThNwvQF9t1fZQoaAZoCWgPQwgxBtZxfI1wQJSGlFKUaBVL3mgWR0CU4YVCXyAhdX2UKGgGaAloD0MIbXTOT3EcckCUhpRSlGgVTRQBaBZHQJThzzpX6qN1fZQoaAZoCWgPQwg4aRoUDW5yQJSGlFKUaBVNBwFoFkdAlOJPmT1TSHV9lChoBmgJaA9DCMtMaf2t1W9AlIaUUpRoFUv8aBZHQJTijRPXTVl1fZQoaAZoCWgPQwihEWxcv4VxQJSGlFKUaBVNFwFoFkdAlOLBJEpiJHV9lChoBmgJaA9DCG76sx8pxHBAlIaUUpRoFUv1aBZHQJTjGHUMG5d1fZQoaAZoCWgPQwjxuRPsf9hwQJSGlFKUaBVNMwFoFkdAlOMgOz6acHV9lChoBmgJaA9DCHnJ/+Svb3FAlIaUUpRoFU03AWgWR0CU40mR/3FldX2UKGgGaAloD0MIJJur5vnBcUCUhpRSlGgVTQIBaBZHQJTkJsdkrgB1fZQoaAZoCWgPQwgyHTo9781vQJSGlFKUaBVNDAFoFkdAlORIpDu0C3V9lChoBmgJaA9DCKMjufxHWnBAlIaUUpRoFUv0aBZHQJTkdBnjABV1fZQoaAZoCWgPQwgWak3zDuFvQJSGlFKUaBVL7WgWR0CU5U+4LCvYdX2UKGgGaAloD0MI9gmgGJl2ckCUhpRSlGgVS/hoFkdAlOVwMMI/q3V9lChoBmgJaA9DCH6pnzcVzHFAlIaUUpRoFUvraBZHQJTlf6rNnoR1fZQoaAZoCWgPQwjrc7UVe+hyQJSGlFKUaBVNIAFoFkdAlOYtALRa5nV9lChoBmgJaA9DCD+sN2pFvnBAlIaUUpRoFU0NAWgWR0CU5opiqhlEdX2UKGgGaAloD0MIpFTCEzrucECUhpRSlGgVTQMBaBZHQJTmo065oXd1fZQoaAZoCWgPQwjH1ciudItwQJSGlFKUaBVNCQFoFkdAlObNShrWRXV9lChoBmgJaA9DCBeARunSw3FAlIaUUpRoFUvxaBZHQJTm1ssQNCt1fZQoaAZoCWgPQwgFTraBO0w4QJSGlFKUaBVLyGgWR0CU5uV/+bVjdX2UKGgGaAloD0MIG5/J/vnLcUCUhpRSlGgVS+BoFkdAlObuC5EtunV9lChoBmgJaA9DCNRlMbH5snJAlIaUUpRoFU1CAWgWR0CU5yIK+i8GdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
ppo-LunarLander-v2_bcont.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40faca7edd3c1304fd4b1f7580534f67b499bca566ed1cf25c783e8aba1037a7
3
+ size 145168
ppo-LunarLander-v2_bcont/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2_bcont/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4be6c43e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4be6c43ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4be6c43f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4be6c47040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4be6c470d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4be6c47160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4be6c471f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4be6c47280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4be6c47310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4be6c473a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4be6c47430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4be6c474c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f4be6c44a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 524288,
25
+ "_total_timesteps": 500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682807386104681055,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADM7aTyR4hc/EuIFvoW6sr7HWUG8/YegPAAAAAAAAAAAwBXCPU58oz/RIDI/laELv222BD32OU4+AAAAAAAAAACVupi+vwVGP1GxHL7nW/S+x+K+vhMwhD4AAAAAAAAAAJoXP735CKg/KqVevgG59L4vbZ+9ZAUMvQAAAAAAAAAAGsEFvcNNBrrR/5e1705aLkgzLrscXKw0AACAPwAAAAAzL6U7KRxmPQYre76l8IS+F5obvjiJZj0AAAAAAAAAADOTrTp5dLk/KDwmPUJrwz4dqNG7XmFjvQAAAAAAAAAAZpntvEiXm7qZhJc3cfmLMlFAD7qH3q62AACAPwAAgD+aD169PcUWuw4geLopqBQ8O/DgO4wYBr0AAIA/AACAP2ZmNbpc81G6lrdJshNr6zBUNT26cqJJMwAAgD8AAIA/8yCyPTUxsz965g4/d+hVvgT5iT3Tdag+AAAAAAAAAADNqPI7bEmBu3NcQzw17Io89fCevGo9bj0AAIA/AACAP8DAgT0cYhS8viKYPcDyHT0VGJ290rT+PQAAgD8AAIA/mssFPHEEXbsFc2s76/mRPDYiirzVcHo9AACAPwAAgD8AIw49AS2HPca6o7wwo5G+nqi+u3duHj0AAAAAAAAAADP69T1nBo8+bdiKvrcIrr4UceU7IrqhvAAAAAAAAAAA6gCjPuoX9T5bCCe+S8m7vm8mSz6004K9AAAAAAAAAADzR20+lJSKPxeFEj+dr7O+AUCiPq3mUT4AAAAAAAAAAADkiD1Vmn8+o9XavZRXkL6Zxh49ncqYPAAAAAAAAAAAmjXoPd5emj82thA/wGDAvnoz5j3yspE+AAAAAAAAAACAR9s9E2g1P/buqzw9c8m+Ow6vPWzrkL0AAAAAAAAAACYqJ77snxY+vU0SPhlOuL7wwWq83vGQPAAAAAAAAAAAgNNmPUPXaLywKDU92wQOvtt0Mr2t2gu/AACAPwAAgD9mn6A8QbSuP2+cHT6MdaO+YkzyPH6XDz4AAAAAAAAAADM9qjwjfys9MvmDvZoklL6gBDW9eKg+PAAAAAAAAAAAmqMTPJFNgj+qkG+9hXgIv0gpfT0ewVY8AAAAAAAAAAAzCQe94QSGut0xVbRQJQywAHsIumqInDMAAIA/AACAP3PtWT4JPx49ehR/OzujCr1MY6w+h/YGvgAAAAAAAAAAzbRqu1Igt7kzw1k38NWVMlBtELr7fX22AACAPwAAgD+amJ+8jy4Jun77lrU8jbsvU7fiu7D3tTQAAIA/AACAPwD6er19drk/F4kTv1YqST2r49C7RxEgvgAAAAAAAAAAhr92vnzlaD8QpWa+imIKv0aNg75FFew9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.04857599999999995,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8FLqkjEDcUCUhpRSlIwBbJRNBgGMAXSUR0CU0JHvc8DCdX2UKGgGaAloD0MI8SkAxvPScECUhpRSlGgVS/toFkdAlNDj3/Pw/nV9lChoBmgJaA9DCBDLZg7JT3FAlIaUUpRoFU0hAWgWR0CU0OwOvt+kdX2UKGgGaAloD0MITihEwGHsckCUhpRSlGgVTWwBaBZHQJTRNvZRKpV1fZQoaAZoCWgPQwjCMjZ0s0xuQJSGlFKUaBVL+2gWR0CU0YCHARChdX2UKGgGaAloD0MICisVVBQgcECUhpRSlGgVTRIBaBZHQJTRiJ0nw5N1fZQoaAZoCWgPQwieXb71YQdyQJSGlFKUaBVNCwFoFkdAlNGgy6+WW3V9lChoBmgJaA9DCDfEeM3rLHNAlIaUUpRoFU0tAWgWR0CU0ajFAE+xdX2UKGgGaAloD0MI1ULJ5FRPcECUhpRSlGgVS+hoFkdAlNIhWcSXdHV9lChoBmgJaA9DCEDZlCu8S3JAlIaUUpRoFUvzaBZHQJTSQGQjlgd1fZQoaAZoCWgPQwjrOH6oNNpuQJSGlFKUaBVL6mgWR0CU0kFQEZBLdX2UKGgGaAloD0MIZJXSM/08ckCUhpRSlGgVTQEBaBZHQJTSbwVj7Q91fZQoaAZoCWgPQwjB/uvc9IVyQJSGlFKUaBVNFQFoFkdAlNKnIhhYvHV9lChoBmgJaA9DCIDY0qMpN3JAlIaUUpRoFU0KAWgWR0CU00VGTcIrdX2UKGgGaAloD0MIa0QwDi4rcECUhpRSlGgVS+hoFkdAlNNak2xY73V9lChoBmgJaA9DCByxFp+Cx29AlIaUUpRoFU0IAWgWR0CU0+UYsNDudX2UKGgGaAloD0MI95Fbky4OckCUhpRSlGgVS+RoFkdAlNPtqYZ2p3V9lChoBmgJaA9DCL+CNGPRk29AlIaUUpRoFUvoaBZHQJTT7dcjZ+R1fZQoaAZoCWgPQwhv8lt0MutwQJSGlFKUaBVNMAFoFkdAlNP1wT/Q0HV9lChoBmgJaA9DCHh95qyPdHNAlIaUUpRoFUv2aBZHQJTT+72+PBB1fZQoaAZoCWgPQwikpl1Ms0tvQJSGlFKUaBVL5GgWR0CU1EIJZ4fPdX2UKGgGaAloD0MIbF1qhP6dcUCUhpRSlGgVTSYBaBZHQJTUZhuwX691fZQoaAZoCWgPQwgYlGk0ecFxQJSGlFKUaBVNvQFoFkdAlNSpW/8EV3V9lChoBmgJaA9DCCj0+pP4N3FAlIaUUpRoFUvgaBZHQJTVIUeuFHt1fZQoaAZoCWgPQwgL68a7I8hRQJSGlFKUaBVN6ANoFkdAlNWMdYGMXXV9lChoBmgJaA9DCKYnLPFAWnJAlIaUUpRoFUvnaBZHQJTVpB8hLXd1fZQoaAZoCWgPQwi+MQQARx1vQJSGlFKUaBVNDwFoFkdAlNYOloDgZXV9lChoBmgJaA9DCOPHmLuWW3JAlIaUUpRoFU0WAWgWR0CU1j6ciGFjdX2UKGgGaAloD0MIpikCnF66cECUhpRSlGgVS/1oFkdAlNZvoJRfnnV9lChoBmgJaA9DCJ+vWS7b4XJAlIaUUpRoFU0MAWgWR0CU10DDTBqLdX2UKGgGaAloD0MIeZEJ+HWDcECUhpRSlGgVS+ZoFkdAlNfVotcv/XV9lChoBmgJaA9DCLFppRAIF3BAlIaUUpRoFUveaBZHQJTX5qHoHLR1fZQoaAZoCWgPQwhkQPZ6NzxzQJSGlFKUaBVL/GgWR0CU1+bi6xxDdX2UKGgGaAloD0MIjKGcaNeMc0CUhpRSlGgVTREBaBZHQJTYBg3Lmp51fZQoaAZoCWgPQwjZmULntZJsQJSGlFKUaBVL9mgWR0CU2AzEaVD8dX2UKGgGaAloD0MIH9rHCj7zcUCUhpRSlGgVTQgBaBZHQJTYDRPXTVl1fZQoaAZoCWgPQwi+amXCb65xQJSGlFKUaBVNAwFoFkdAlNhd0zTF2nV9lChoBmgJaA9DCH0h5Ly/GnFAlIaUUpRoFUvsaBZHQJTYXWhAWzp1fZQoaAZoCWgPQwhu+N10yztzQJSGlFKUaBVL9mgWR0CU2KR64UeudX2UKGgGaAloD0MITOMXXgkscECUhpRSlGgVS/JoFkdAlNj0Xxe9jHV9lChoBmgJaA9DCLyWkA/6LXFAlIaUUpRoFUv5aBZHQJTZQTFl05l1fZQoaAZoCWgPQwh0KENVjM9wQJSGlFKUaBVNAgFoFkdAlNl+CoS+QHV9lChoBmgJaA9DCJsCmZ0FG3JAlIaUUpRoFUv/aBZHQJTZlFUhmoR1fZQoaAZoCWgPQwigF+5cmGRxQJSGlFKUaBVL52gWR0CU2boXbdrPdX2UKGgGaAloD0MIGVWGcTdYckCUhpRSlGgVTQMBaBZHQJTZ4miQDFJ1fZQoaAZoCWgPQwgEBHP0OF9yQJSGlFKUaBVL4WgWR0CU2hCAMDwIdX2UKGgGaAloD0MIL7/TZAZIcUCUhpRSlGgVTTUBaBZHQJTaKqcVgx91fZQoaAZoCWgPQwhkAn6NZG5wQJSGlFKUaBVL42gWR0CU2oP9kz42dX2UKGgGaAloD0MIZktWRThhcECUhpRSlGgVS/doFkdAlNqYYvWYnnV9lChoBmgJaA9DCHdJnBVRi29AlIaUUpRoFUv3aBZHQJTapvrGBFx1fZQoaAZoCWgPQwhTk+AN6ZxyQJSGlFKUaBVNBgFoFkdAlNr9gWrOq3V9lChoBmgJaA9DCIWVCirqSXFAlIaUUpRoFU0HAWgWR0CU2v4KQaJidX2UKGgGaAloD0MInfNTHEf4cUCUhpRSlGgVTQUBaBZHQJTbRaTwDvF1fZQoaAZoCWgPQwgAOPbsufVwQJSGlFKUaBVNLgFoFkdAlNt/9LpRoHV9lChoBmgJaA9DCKku4GUGU3FAlIaUUpRoFUvzaBZHQJTboYMvysl1fZQoaAZoCWgPQwhdaoR+Ju1yQJSGlFKUaBVL+WgWR0CU3C/r0J4TdX2UKGgGaAloD0MIOrAcIQMfbUCUhpRSlGgVS/loFkdAlNy61G9YfXV9lChoBmgJaA9DCGhYjLpW429AlIaUUpRoFU0PAWgWR0CU3OGHYYixdX2UKGgGaAloD0MIv30dOKfScUCUhpRSlGgVTUsBaBZHQJTdlfTkQwt1fZQoaAZoCWgPQwhupGyR9LFwQJSGlFKUaBVNEQFoFkdAlN3SMo+fRXV9lChoBmgJaA9DCLExryPOvXBAlIaUUpRoFUveaBZHQJTd9cv/R3N1fZQoaAZoCWgPQwhznUZa6otyQJSGlFKUaBVL82gWR0CU3nBEa2nbdX2UKGgGaAloD0MIkGeXb/00cUCUhpRSlGgVS/xoFkdAlN6nlXA/LXV9lChoBmgJaA9DCJRMTu2MdHBAlIaUUpRoFUv9aBZHQJTe3wCr92p1fZQoaAZoCWgPQwgMWd3quV1tQJSGlFKUaBVL8WgWR0CU3uWKMvRJdX2UKGgGaAloD0MIwELmyiDUcECUhpRSlGgVS/toFkdAlN82j4593XV9lChoBmgJaA9DCD+Ne/Mbz3BAlIaUUpRoFU0NAWgWR0CU3z5fMOf/dX2UKGgGaAloD0MIcJUnEDZmckCUhpRSlGgVS9toFkdAlN9FfeDWb3V9lChoBmgJaA9DCLoyqDb4aXJAlIaUUpRoFU0lAWgWR0CU31ZLZi/gdX2UKGgGaAloD0MI9dbAVgnlcECUhpRSlGgVS+doFkdAlN/4lIEr5XV9lChoBmgJaA9DCLSOqibIj3FAlIaUUpRoFU0YAWgWR0CU4F03wTdtdX2UKGgGaAloD0MI0bGDSlw8b0CUhpRSlGgVTTQBaBZHQJTggUM5OrR1fZQoaAZoCWgPQwhyhuKON9JxQJSGlFKUaBVL9WgWR0CU4IizcAR1dX2UKGgGaAloD0MI3sZmR2rPckCUhpRSlGgVS/NoFkdAlOCl3t8eCHV9lChoBmgJaA9DCL2Pozlyl3FAlIaUUpRoFU0ZAWgWR0CU4LrMkhRqdX2UKGgGaAloD0MIPUZ55qUhcUCUhpRSlGgVTYsBaBZHQJThKE7GNrF1fZQoaAZoCWgPQwhRg2kYfvdxQJSGlFKUaBVL7WgWR0CU4SjFQ2uQdX2UKGgGaAloD0MIiNo2jMI8cUCUhpRSlGgVTQEBaBZHQJThNwvQF9t1fZQoaAZoCWgPQwgxBtZxfI1wQJSGlFKUaBVL3mgWR0CU4YVCXyAhdX2UKGgGaAloD0MIbXTOT3EcckCUhpRSlGgVTRQBaBZHQJThzzpX6qN1fZQoaAZoCWgPQwg4aRoUDW5yQJSGlFKUaBVNBwFoFkdAlOJPmT1TSHV9lChoBmgJaA9DCMtMaf2t1W9AlIaUUpRoFUv8aBZHQJTijRPXTVl1fZQoaAZoCWgPQwihEWxcv4VxQJSGlFKUaBVNFwFoFkdAlOLBJEpiJHV9lChoBmgJaA9DCG76sx8pxHBAlIaUUpRoFUv1aBZHQJTjGHUMG5d1fZQoaAZoCWgPQwjxuRPsf9hwQJSGlFKUaBVNMwFoFkdAlOMgOz6acHV9lChoBmgJaA9DCHnJ/+Svb3FAlIaUUpRoFU03AWgWR0CU40mR/3FldX2UKGgGaAloD0MIJJur5vnBcUCUhpRSlGgVTQIBaBZHQJTkJsdkrgB1fZQoaAZoCWgPQwgyHTo9781vQJSGlFKUaBVNDAFoFkdAlORIpDu0C3V9lChoBmgJaA9DCKMjufxHWnBAlIaUUpRoFUv0aBZHQJTkdBnjABV1fZQoaAZoCWgPQwgWak3zDuFvQJSGlFKUaBVL7WgWR0CU5U+4LCvYdX2UKGgGaAloD0MI9gmgGJl2ckCUhpRSlGgVS/hoFkdAlOVwMMI/q3V9lChoBmgJaA9DCH6pnzcVzHFAlIaUUpRoFUvraBZHQJTlf6rNnoR1fZQoaAZoCWgPQwjrc7UVe+hyQJSGlFKUaBVNIAFoFkdAlOYtALRa5nV9lChoBmgJaA9DCD+sN2pFvnBAlIaUUpRoFU0NAWgWR0CU5opiqhlEdX2UKGgGaAloD0MIpFTCEzrucECUhpRSlGgVTQMBaBZHQJTmo065oXd1fZQoaAZoCWgPQwjH1ciudItwQJSGlFKUaBVNCQFoFkdAlObNShrWRXV9lChoBmgJaA9DCBeARunSw3FAlIaUUpRoFUvxaBZHQJTm1ssQNCt1fZQoaAZoCWgPQwgFTraBO0w4QJSGlFKUaBVLyGgWR0CU5uV/+bVjdX2UKGgGaAloD0MIG5/J/vnLcUCUhpRSlGgVS+BoFkdAlObuC5EtunV9lChoBmgJaA9DCNRlMbH5snJAlIaUUpRoFU1CAWgWR0CU5yIK+i8GdWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 296,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 32,
81
+ "n_steps": 2048,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 256,
88
+ "n_epochs": 8,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2_bcont/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c910ed60b02a6b8dc13eda23b9bf941f8497c6367793ce0377d25a20d64eb02
3
+ size 84893
ppo-LunarLander-v2_bcont/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6708345594ed91c2d894b6c7cec2c39966ef325534291785f8ffa184b58e8369
3
+ size 43329
ppo-LunarLander-v2_bcont/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2_bcont/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.11.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -196.9617764291264, "std_reward": 65.5380898589992, "n_evaluation_episodes": 10, "eval_datetime": "2023-04-29T16:30:42.452327"}
 
1
+ {"mean_reward": 268.39576945891366, "std_reward": 21.209066085759524, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T17:36:51.435864"}