ZhiyuanChen commited on
Commit
03464c8
1 Parent(s): c591fb6

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. README.md +301 -0
  2. config.json +58 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
  5. special_tokens_map.json +12 -0
  6. tokenizer_config.json +68 -0
  7. vocab.txt +631 -0
README.md ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: rna
3
+ tags:
4
+ - Biology
5
+ - RNA
6
+ license: agpl-3.0
7
+ datasets:
8
+ - multimolecule/gencode
9
+ library_name: multimolecule
10
+ pipeline_tag: fill-mask
11
+ mask_token: "<mask>"
12
+ widget:
13
+ - example_title: "microRNA-21"
14
+ text: "UAGC<mask><mask><mask>UCAGACUGAUGUUGA"
15
+ output:
16
+ - label: "GAC"
17
+ score: 0.6499986052513123
18
+ - label: "GUC"
19
+ score: 0.07012350112199783
20
+ - label: "CAC"
21
+ score: 0.06567499041557312
22
+ - label: "GCC"
23
+ score: 0.06494498997926712
24
+ - label: "GGC"
25
+ score: 0.06052926927804947
26
+ ---
27
+
28
+ # 3UTRBERT
29
+
30
+ Pre-trained model on 3’ untranslated region (3’UTR) using a masked language modeling (MLM) objective.
31
+
32
+ ## Disclaimer
33
+
34
+ This is an UNOFFICIAL implementation of the [Deciphering 3’ UTR mediated gene regulation using interpretable deep representation learning](https://doi.org/10.1101/2023.09.08.556883) by Yuning Yang, Gen Li, et al.
35
+
36
+ The OFFICIAL repository of 3UTRBERT is at [yangyn533/3UTRBERT](https://github.com/yangyn533/3UTRBERT).
37
+
38
+ > [!TIP]
39
+ > The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
40
+
41
+ **The team releasing 3UTRBERT did not write this model card for this model so this model card has been written by the MultiMolecule team.**
42
+
43
+ ## Model Details
44
+
45
+ 3UTRBERT is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of 3’ untranslated regions (3’UTRs) in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
46
+
47
+ ### Variations
48
+
49
+ - **[`multimolecule/utrbert-3mer`](https://huggingface.co/multimolecule/utrbert-3mer)**: The 3UTRBERT model pre-trained on 3-mer data.
50
+ - **[`multimolecule/utrbert-4mer`](https://huggingface.co/multimolecule/utrbert-4mer)**: The 3UTRBERT model pre-trained on 4-mer data.
51
+ - **[`multimolecule/utrbert-5mer`](https://huggingface.co/multimolecule/utrbert-5mer)**: The 3UTRBERT model pre-trained on 5-mer data.
52
+ - **[`multimolecule/utrbert-6mer`](https://huggingface.co/multimolecule/utrbert-6mer)**: The 3UTRBERT model pre-trained on 6-mer data.
53
+
54
+ ### Model Specification
55
+
56
+ <table>
57
+ <thead>
58
+ <tr>
59
+ <th>Variants</th>
60
+ <th>Num Layers</th>
61
+ <th>Hidden Size</th>
62
+ <th>Num Heads</th>
63
+ <th>Intermediate Size</th>
64
+ <th>Num Parameters (M)</th>
65
+ <th>FLOPs (G)</th>
66
+ <th>MACs (G)</th>
67
+ <th>Max Num Tokens</th>
68
+ </tr>
69
+ </thead>
70
+ <tbody>
71
+ <tr>
72
+ <td>UTRBERT-3mer</td>
73
+ <td rowspan="4">12</td>
74
+ <td rowspan="4">768</td>
75
+ <td rowspan="4">12</td>
76
+ <td rowspan="4">3072</td>
77
+ <td>86.14</td>
78
+ <td rowspan="4">22.36</td>
79
+ <td rowspan="4">11.17</td>
80
+ <td rowspan="4">512</td>
81
+ </tr>
82
+ <tr>
83
+ <td>UTRBERT-4mer</td>
84
+ <td>86.53</td>
85
+ </tr>
86
+ <tr>
87
+ <td>UTRBERT-5mer</td>
88
+ <td>88.45</td>
89
+ </tr>
90
+ <tr>
91
+ <td>UTRBERT-6mer</td>
92
+ <td>98.05</td>
93
+ </tr>
94
+ </tbody>
95
+ </table>
96
+
97
+ ### Links
98
+
99
+ - **Code**: [multimolecule.utrbert](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/utrbert)
100
+ - **Data**: [GENCODE](https://gencodegenes.org)
101
+ - **Paper**: [Deciphering 3’ UTR mediated gene regulation using interpretable deep representation learning](https://doi.org/10.1101/2023.09.08.556883)
102
+ - **Developed by**: Yuning Yang, Gen Li, Kuan Pang, Wuxinhao Cao, Xiangtao Li, Zhaolei Zhang
103
+ - **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased) - [FlashAttention](https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention)
104
+ - **Original Repository**: [https://github.com/yangyn533/3UTRBERT](https://github.com/yangyn533/3UTRBERT)
105
+
106
+ ## Usage
107
+
108
+ The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
109
+
110
+ ```bash
111
+ pip install multimolecule
112
+ ```
113
+
114
+ ### Direct Use
115
+
116
+ **Note**: Default transformers pipeline does not support K-mer tokenization.
117
+
118
+ You can use this model directly with a pipeline for masked language modeling:
119
+
120
+ ```python
121
+ >>> import multimolecule # you must import multimolecule to register models
122
+ >>> from transformers import pipeline
123
+ >>> unmasker = pipeline('fill-mask', model='multimolecule/utrbert-3mer')
124
+ >>> unmasker("uag<mask><mask><mask>cagacugauguuga")[1]
125
+
126
+ [{'score': 0.6499986052513123,
127
+ 'token': 57,
128
+ 'token_str': 'GAC',
129
+ 'sequence': '<cls> UAG <mask> GAC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
130
+ {'score': 0.07012350112199783,
131
+ 'token': 72,
132
+ 'token_str': 'GUC',
133
+ 'sequence': '<cls> UAG <mask> GUC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
134
+ {'score': 0.06567499041557312,
135
+ 'token': 32,
136
+ 'token_str': 'CAC',
137
+ 'sequence': '<cls> UAG <mask> CAC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
138
+ {'score': 0.06494498997926712,
139
+ 'token': 62,
140
+ 'token_str': 'GCC',
141
+ 'sequence': '<cls> UAG <mask> GCC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
142
+ {'score': 0.06052926927804947,
143
+ 'token': 67,
144
+ 'token_str': 'GGC',
145
+ 'sequence': '<cls> UAG <mask> GGC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'}]
146
+ ```
147
+
148
+ ### Downstream Use
149
+
150
+ #### Extract Features
151
+
152
+ Here is how to use this model to get the features of a given sequence in PyTorch:
153
+
154
+ ```python
155
+ from multimolecule import RnaTokenizer, UtrBertModel
156
+
157
+
158
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert-3mer')
159
+ model = UtrBertModel.from_pretrained('multimolecule/utrbert-3mer')
160
+
161
+ text = "UAGCUUAUCAGACUGAUGUUGA"
162
+ input = tokenizer(text, return_tensors='pt')
163
+
164
+ output = model(**input)
165
+ ```
166
+
167
+ #### Sequence Classification / Regression
168
+
169
+ **Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
170
+
171
+ Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
172
+
173
+ ```python
174
+ import torch
175
+ from multimolecule import RnaTokenizer, UtrBertForSequencePrediction
176
+
177
+
178
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert-3mer')
179
+ model = UtrBertForSequencePrediction.from_pretrained('multimolecule/utrbert-3mer')
180
+
181
+ text = "UAGCUUAUCAGACUGAUGUUGA"
182
+ input = tokenizer(text, return_tensors='pt')
183
+ label = torch.tensor([1])
184
+
185
+ output = model(**input, labels=label)
186
+ ```
187
+
188
+ #### Nucleotide Classification / Regression
189
+
190
+ **Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for nucleotide classification or regression.
191
+
192
+ Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
193
+
194
+ ```python
195
+ import torch
196
+ from multimolecule import RnaTokenizer, UtrBertForNucleotidePrediction
197
+
198
+
199
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert-3mer')
200
+ model = UtrBertForNucleotidePrediction.from_pretrained('multimolecule/utrbert-3mer')
201
+
202
+ text = "UAGCUUAUCAGACUGAUGUUGA"
203
+ input = tokenizer(text, return_tensors='pt')
204
+ label = torch.randint(2, (len(text), ))
205
+
206
+ output = model(**input, labels=label)
207
+ ```
208
+
209
+ #### Contact Classification / Regression
210
+
211
+ **Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
212
+
213
+ Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
214
+
215
+ ```python
216
+ import torch
217
+ from multimolecule import RnaTokenizer, UtrBertForContactPrediction
218
+
219
+
220
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert')
221
+ model = UtrBertForContactPrediction.from_pretrained('multimolecule/utrbert')
222
+
223
+ text = "UAGCUUAUCAGACUGAUGUUGA"
224
+ input = tokenizer(text, return_tensors='pt')
225
+ label = torch.randint(2, (len(text), len(text)))
226
+
227
+ output = model(**input, labels=label)
228
+ ```
229
+
230
+ ## Training Details
231
+
232
+ 3UTRBERT used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
233
+
234
+ ### Training Data
235
+
236
+ The 3UTRBERT model was pre-trained on human mRNA transcript sequences from [GENCODE](https://gencodegenes.org).
237
+ GENCODE aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. The GENCODE release 40 used by this work contains 61,544 genes, and 246,624 transcripts.
238
+
239
+ 3UTRBERT collected the human mRNA transcript sequences from GENCODE, including 108,573 unique mRNA transcripts. Only the longest transcript of each gene was used in the pre-training process. 3UTRBERT only used the 3’ untranslated regions (3’UTRs) of the mRNA transcripts for pre-training to avoid codon constrains in the CDS region, and to reduce increased complexity of the entire mRNA transcripts. The average length of the 3’UTRs was 1,227 nucleotides, while the median length was 631 nucleotides. Each 3’UTR sequence was cut to non-overlapping patches of 510 nucleotides. The remaining sequences were padded to the same length.
240
+
241
+ Note [`RnaTokenizer`][multimolecule.RnaTokenizer] will convert "T"s to "U"s for you, you may disable this behaviour by passing `replace_T_with_U=False`.
242
+
243
+ ### Training Procedure
244
+
245
+ #### Preprocessing
246
+
247
+ 3UTRBERT used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
248
+
249
+ - 15% of the tokens are masked.
250
+ - In 80% of the cases, the masked tokens are replaced by `<mask>`.
251
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
252
+ - In the 10% remaining cases, the masked tokens are left as is.
253
+
254
+ Since 3UTRBERT used k-mer tokenizer, it masks the entire k-mer instead of individual nucleotides to avoid information leakage.
255
+
256
+ For example, if the k-mer is 3, the sequence `"UAGCGUAU"` will be tokenized as `["UAG", "AGC", "GCG", "CGU", "GUA", "UAU"]`. If the nucleotide `"C"` is masked, the adjacent tokens will also be masked, resulting `["UAG", "<mask>", "<mask>", "<mask>", "GUA", "UAU"]`.
257
+
258
+ #### PreTraining
259
+
260
+ The model was trained on 4 NVIDIA Quadro RTX 6000 GPUs with 24GiB memories.
261
+
262
+ - Batch size: 128
263
+ - Learning rate: 3e-4
264
+ - Weight decay: 0.01
265
+ - Optimizer: AdamW(β1=0.9, β2=0.98, e=1e-6)
266
+ - Steps: 200,000
267
+ - Learning rate scheduler: Linear
268
+ - Learning rate warm-up: 10,000 steps
269
+
270
+ ## Citation
271
+
272
+ **BibTeX**:
273
+
274
+ ```bibtex
275
+ @article {yang2023deciphering,
276
+ author = {Yang, Yuning and Li, Gen and Pang, Kuan and Cao, Wuxinhao and Li, Xiangtao and Zhang, Zhaolei},
277
+ title = {Deciphering 3{\textquoteright} UTR mediated gene regulation using interpretable deep representation learning},
278
+ elocation-id = {2023.09.08.556883},
279
+ year = {2023},
280
+ doi = {10.1101/2023.09.08.556883},
281
+ publisher = {Cold Spring Harbor Laboratory},
282
+ abstract = {The 3{\textquoteright}untranslated regions (3{\textquoteright}UTRs) of messenger RNAs contain many important cis-regulatory elements that are under functional and evolutionary constraints. We hypothesize that these constraints are similar to grammars and syntaxes in human languages and can be modeled by advanced natural language models such as Transformers, which has been very effective in modeling protein sequence and structures. Here we describe 3UTRBERT, which implements an attention-based language model, i.e., Bidirectional Encoder Representations from Transformers (BERT). 3UTRBERT was pre-trained on aggregated 3{\textquoteright}UTR sequences of human mRNAs in a task-agnostic manner; the pre-trained model was then fine-tuned for specific downstream tasks such as predicting RBP binding sites, m6A RNA modification sites, and predicting RNA sub-cellular localizations. Benchmark results showed that 3UTRBERT generally outperformed other contemporary methods in each of these tasks. We also showed that the self-attention mechanism within 3UTRBERT allows direct visualization of the semantic relationship between sequence elements.Competing Interest StatementThe authors have declared no competing interest.},
283
+ URL = {https://www.biorxiv.org/content/early/2023/09/12/2023.09.08.556883},
284
+ eprint = {https://www.biorxiv.org/content/early/2023/09/12/2023.09.08.556883.full.pdf},
285
+ journal = {bioRxiv}
286
+ }
287
+ ```
288
+
289
+ ## Contact
290
+
291
+ Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
292
+
293
+ Please contact the authors of the [3UTRBERT paper](https://doi.org/10.1101/2023.09.08.556883) for questions or comments on the paper/model.
294
+
295
+ ## License
296
+
297
+ This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
298
+
299
+ ```spdx
300
+ SPDX-License-Identifier: AGPL-3.0-or-later
301
+ ```
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UtrBertForPreTraining"
4
+ ],
5
+ "attention_dropout": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "eos_token_ids": 0,
9
+ "head": {
10
+ "act": null,
11
+ "bias": true,
12
+ "dropout": 0.0,
13
+ "hidden_size": null,
14
+ "layer_norm_eps": 1e-12,
15
+ "num_labels": null,
16
+ "output_name": null,
17
+ "problem_type": null,
18
+ "transform": null,
19
+ "transform_act": "gelu"
20
+ },
21
+ "hidden_act": "gelu",
22
+ "hidden_dropout": 0.1,
23
+ "hidden_size": 768,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "layer_norm_eps": 1e-12,
27
+ "lm_head": {
28
+ "act": null,
29
+ "bias": true,
30
+ "dropout": 0.0,
31
+ "hidden_size": 768,
32
+ "layer_norm_eps": 1e-12,
33
+ "output_name": null,
34
+ "transform": "nonlinear",
35
+ "transform_act": "gelu"
36
+ },
37
+ "mask_token_id": 4,
38
+ "max_position_embeddings": 512,
39
+ "model_type": "utrbert",
40
+ "nmers": 4,
41
+ "null_token_id": 5,
42
+ "num_attention_heads": 12,
43
+ "num_hidden_layers": 12,
44
+ "num_rnn_layer": 1,
45
+ "output_past": true,
46
+ "pad_token_id": 0,
47
+ "position_embedding_type": "absolute",
48
+ "rnn": "lstm",
49
+ "rnn_dropout": 0.0,
50
+ "rnn_hidden": 768,
51
+ "split": 10,
52
+ "torch_dtype": "float32",
53
+ "transformers_version": "4.44.0",
54
+ "type_vocab_size": 2,
55
+ "unk_token_id": 3,
56
+ "use_cache": true,
57
+ "vocab_size": 631
58
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8902d92a50f8e743a2b1f50e7d87100cfb848fcbd4a2e310762c25d3c9bb95e
3
+ size 348499204
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c32d59c3ea2e01fc8524bff679f548236f8a6638696d69ef09a7a7d0d7c5e317
3
+ size 348542650
special_tokens_map.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<null>"
4
+ ],
5
+ "bos_token": "<cls>",
6
+ "cls_token": "<cls>",
7
+ "eos_token": "<eos>",
8
+ "mask_token": "<mask>",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "<eos>",
11
+ "unk_token": "<unk>"
12
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<cls>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<eos>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<null>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "additional_special_tokens": [
53
+ "<null>"
54
+ ],
55
+ "bos_token": "<cls>",
56
+ "clean_up_tokenization_spaces": true,
57
+ "cls_token": "<cls>",
58
+ "codon": false,
59
+ "eos_token": "<eos>",
60
+ "mask_token": "<mask>",
61
+ "model_max_length": 510,
62
+ "nmers": 4,
63
+ "pad_token": "<pad>",
64
+ "replace_T_with_U": true,
65
+ "sep_token": "<eos>",
66
+ "tokenizer_class": "RnaTokenizer",
67
+ "unk_token": "<unk>"
68
+ }
vocab.txt ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <pad>
2
+ <cls>
3
+ <eos>
4
+ <unk>
5
+ <mask>
6
+ <null>
7
+ AAAA
8
+ AAAC
9
+ AAAG
10
+ AAAU
11
+ AAAN
12
+ AACA
13
+ AACC
14
+ AACG
15
+ AACU
16
+ AACN
17
+ AAGA
18
+ AAGC
19
+ AAGG
20
+ AAGU
21
+ AAGN
22
+ AAUA
23
+ AAUC
24
+ AAUG
25
+ AAUU
26
+ AAUN
27
+ AANA
28
+ AANC
29
+ AANG
30
+ AANU
31
+ AANN
32
+ ACAA
33
+ ACAC
34
+ ACAG
35
+ ACAU
36
+ ACAN
37
+ ACCA
38
+ ACCC
39
+ ACCG
40
+ ACCU
41
+ ACCN
42
+ ACGA
43
+ ACGC
44
+ ACGG
45
+ ACGU
46
+ ACGN
47
+ ACUA
48
+ ACUC
49
+ ACUG
50
+ ACUU
51
+ ACUN
52
+ ACNA
53
+ ACNC
54
+ ACNG
55
+ ACNU
56
+ ACNN
57
+ AGAA
58
+ AGAC
59
+ AGAG
60
+ AGAU
61
+ AGAN
62
+ AGCA
63
+ AGCC
64
+ AGCG
65
+ AGCU
66
+ AGCN
67
+ AGGA
68
+ AGGC
69
+ AGGG
70
+ AGGU
71
+ AGGN
72
+ AGUA
73
+ AGUC
74
+ AGUG
75
+ AGUU
76
+ AGUN
77
+ AGNA
78
+ AGNC
79
+ AGNG
80
+ AGNU
81
+ AGNN
82
+ AUAA
83
+ AUAC
84
+ AUAG
85
+ AUAU
86
+ AUAN
87
+ AUCA
88
+ AUCC
89
+ AUCG
90
+ AUCU
91
+ AUCN
92
+ AUGA
93
+ AUGC
94
+ AUGG
95
+ AUGU
96
+ AUGN
97
+ AUUA
98
+ AUUC
99
+ AUUG
100
+ AUUU
101
+ AUUN
102
+ AUNA
103
+ AUNC
104
+ AUNG
105
+ AUNU
106
+ AUNN
107
+ ANAA
108
+ ANAC
109
+ ANAG
110
+ ANAU
111
+ ANAN
112
+ ANCA
113
+ ANCC
114
+ ANCG
115
+ ANCU
116
+ ANCN
117
+ ANGA
118
+ ANGC
119
+ ANGG
120
+ ANGU
121
+ ANGN
122
+ ANUA
123
+ ANUC
124
+ ANUG
125
+ ANUU
126
+ ANUN
127
+ ANNA
128
+ ANNC
129
+ ANNG
130
+ ANNU
131
+ ANNN
132
+ CAAA
133
+ CAAC
134
+ CAAG
135
+ CAAU
136
+ CAAN
137
+ CACA
138
+ CACC
139
+ CACG
140
+ CACU
141
+ CACN
142
+ CAGA
143
+ CAGC
144
+ CAGG
145
+ CAGU
146
+ CAGN
147
+ CAUA
148
+ CAUC
149
+ CAUG
150
+ CAUU
151
+ CAUN
152
+ CANA
153
+ CANC
154
+ CANG
155
+ CANU
156
+ CANN
157
+ CCAA
158
+ CCAC
159
+ CCAG
160
+ CCAU
161
+ CCAN
162
+ CCCA
163
+ CCCC
164
+ CCCG
165
+ CCCU
166
+ CCCN
167
+ CCGA
168
+ CCGC
169
+ CCGG
170
+ CCGU
171
+ CCGN
172
+ CCUA
173
+ CCUC
174
+ CCUG
175
+ CCUU
176
+ CCUN
177
+ CCNA
178
+ CCNC
179
+ CCNG
180
+ CCNU
181
+ CCNN
182
+ CGAA
183
+ CGAC
184
+ CGAG
185
+ CGAU
186
+ CGAN
187
+ CGCA
188
+ CGCC
189
+ CGCG
190
+ CGCU
191
+ CGCN
192
+ CGGA
193
+ CGGC
194
+ CGGG
195
+ CGGU
196
+ CGGN
197
+ CGUA
198
+ CGUC
199
+ CGUG
200
+ CGUU
201
+ CGUN
202
+ CGNA
203
+ CGNC
204
+ CGNG
205
+ CGNU
206
+ CGNN
207
+ CUAA
208
+ CUAC
209
+ CUAG
210
+ CUAU
211
+ CUAN
212
+ CUCA
213
+ CUCC
214
+ CUCG
215
+ CUCU
216
+ CUCN
217
+ CUGA
218
+ CUGC
219
+ CUGG
220
+ CUGU
221
+ CUGN
222
+ CUUA
223
+ CUUC
224
+ CUUG
225
+ CUUU
226
+ CUUN
227
+ CUNA
228
+ CUNC
229
+ CUNG
230
+ CUNU
231
+ CUNN
232
+ CNAA
233
+ CNAC
234
+ CNAG
235
+ CNAU
236
+ CNAN
237
+ CNCA
238
+ CNCC
239
+ CNCG
240
+ CNCU
241
+ CNCN
242
+ CNGA
243
+ CNGC
244
+ CNGG
245
+ CNGU
246
+ CNGN
247
+ CNUA
248
+ CNUC
249
+ CNUG
250
+ CNUU
251
+ CNUN
252
+ CNNA
253
+ CNNC
254
+ CNNG
255
+ CNNU
256
+ CNNN
257
+ GAAA
258
+ GAAC
259
+ GAAG
260
+ GAAU
261
+ GAAN
262
+ GACA
263
+ GACC
264
+ GACG
265
+ GACU
266
+ GACN
267
+ GAGA
268
+ GAGC
269
+ GAGG
270
+ GAGU
271
+ GAGN
272
+ GAUA
273
+ GAUC
274
+ GAUG
275
+ GAUU
276
+ GAUN
277
+ GANA
278
+ GANC
279
+ GANG
280
+ GANU
281
+ GANN
282
+ GCAA
283
+ GCAC
284
+ GCAG
285
+ GCAU
286
+ GCAN
287
+ GCCA
288
+ GCCC
289
+ GCCG
290
+ GCCU
291
+ GCCN
292
+ GCGA
293
+ GCGC
294
+ GCGG
295
+ GCGU
296
+ GCGN
297
+ GCUA
298
+ GCUC
299
+ GCUG
300
+ GCUU
301
+ GCUN
302
+ GCNA
303
+ GCNC
304
+ GCNG
305
+ GCNU
306
+ GCNN
307
+ GGAA
308
+ GGAC
309
+ GGAG
310
+ GGAU
311
+ GGAN
312
+ GGCA
313
+ GGCC
314
+ GGCG
315
+ GGCU
316
+ GGCN
317
+ GGGA
318
+ GGGC
319
+ GGGG
320
+ GGGU
321
+ GGGN
322
+ GGUA
323
+ GGUC
324
+ GGUG
325
+ GGUU
326
+ GGUN
327
+ GGNA
328
+ GGNC
329
+ GGNG
330
+ GGNU
331
+ GGNN
332
+ GUAA
333
+ GUAC
334
+ GUAG
335
+ GUAU
336
+ GUAN
337
+ GUCA
338
+ GUCC
339
+ GUCG
340
+ GUCU
341
+ GUCN
342
+ GUGA
343
+ GUGC
344
+ GUGG
345
+ GUGU
346
+ GUGN
347
+ GUUA
348
+ GUUC
349
+ GUUG
350
+ GUUU
351
+ GUUN
352
+ GUNA
353
+ GUNC
354
+ GUNG
355
+ GUNU
356
+ GUNN
357
+ GNAA
358
+ GNAC
359
+ GNAG
360
+ GNAU
361
+ GNAN
362
+ GNCA
363
+ GNCC
364
+ GNCG
365
+ GNCU
366
+ GNCN
367
+ GNGA
368
+ GNGC
369
+ GNGG
370
+ GNGU
371
+ GNGN
372
+ GNUA
373
+ GNUC
374
+ GNUG
375
+ GNUU
376
+ GNUN
377
+ GNNA
378
+ GNNC
379
+ GNNG
380
+ GNNU
381
+ GNNN
382
+ UAAA
383
+ UAAC
384
+ UAAG
385
+ UAAU
386
+ UAAN
387
+ UACA
388
+ UACC
389
+ UACG
390
+ UACU
391
+ UACN
392
+ UAGA
393
+ UAGC
394
+ UAGG
395
+ UAGU
396
+ UAGN
397
+ UAUA
398
+ UAUC
399
+ UAUG
400
+ UAUU
401
+ UAUN
402
+ UANA
403
+ UANC
404
+ UANG
405
+ UANU
406
+ UANN
407
+ UCAA
408
+ UCAC
409
+ UCAG
410
+ UCAU
411
+ UCAN
412
+ UCCA
413
+ UCCC
414
+ UCCG
415
+ UCCU
416
+ UCCN
417
+ UCGA
418
+ UCGC
419
+ UCGG
420
+ UCGU
421
+ UCGN
422
+ UCUA
423
+ UCUC
424
+ UCUG
425
+ UCUU
426
+ UCUN
427
+ UCNA
428
+ UCNC
429
+ UCNG
430
+ UCNU
431
+ UCNN
432
+ UGAA
433
+ UGAC
434
+ UGAG
435
+ UGAU
436
+ UGAN
437
+ UGCA
438
+ UGCC
439
+ UGCG
440
+ UGCU
441
+ UGCN
442
+ UGGA
443
+ UGGC
444
+ UGGG
445
+ UGGU
446
+ UGGN
447
+ UGUA
448
+ UGUC
449
+ UGUG
450
+ UGUU
451
+ UGUN
452
+ UGNA
453
+ UGNC
454
+ UGNG
455
+ UGNU
456
+ UGNN
457
+ UUAA
458
+ UUAC
459
+ UUAG
460
+ UUAU
461
+ UUAN
462
+ UUCA
463
+ UUCC
464
+ UUCG
465
+ UUCU
466
+ UUCN
467
+ UUGA
468
+ UUGC
469
+ UUGG
470
+ UUGU
471
+ UUGN
472
+ UUUA
473
+ UUUC
474
+ UUUG
475
+ UUUU
476
+ UUUN
477
+ UUNA
478
+ UUNC
479
+ UUNG
480
+ UUNU
481
+ UUNN
482
+ UNAA
483
+ UNAC
484
+ UNAG
485
+ UNAU
486
+ UNAN
487
+ UNCA
488
+ UNCC
489
+ UNCG
490
+ UNCU
491
+ UNCN
492
+ UNGA
493
+ UNGC
494
+ UNGG
495
+ UNGU
496
+ UNGN
497
+ UNUA
498
+ UNUC
499
+ UNUG
500
+ UNUU
501
+ UNUN
502
+ UNNA
503
+ UNNC
504
+ UNNG
505
+ UNNU
506
+ UNNN
507
+ NAAA
508
+ NAAC
509
+ NAAG
510
+ NAAU
511
+ NAAN
512
+ NACA
513
+ NACC
514
+ NACG
515
+ NACU
516
+ NACN
517
+ NAGA
518
+ NAGC
519
+ NAGG
520
+ NAGU
521
+ NAGN
522
+ NAUA
523
+ NAUC
524
+ NAUG
525
+ NAUU
526
+ NAUN
527
+ NANA
528
+ NANC
529
+ NANG
530
+ NANU
531
+ NANN
532
+ NCAA
533
+ NCAC
534
+ NCAG
535
+ NCAU
536
+ NCAN
537
+ NCCA
538
+ NCCC
539
+ NCCG
540
+ NCCU
541
+ NCCN
542
+ NCGA
543
+ NCGC
544
+ NCGG
545
+ NCGU
546
+ NCGN
547
+ NCUA
548
+ NCUC
549
+ NCUG
550
+ NCUU
551
+ NCUN
552
+ NCNA
553
+ NCNC
554
+ NCNG
555
+ NCNU
556
+ NCNN
557
+ NGAA
558
+ NGAC
559
+ NGAG
560
+ NGAU
561
+ NGAN
562
+ NGCA
563
+ NGCC
564
+ NGCG
565
+ NGCU
566
+ NGCN
567
+ NGGA
568
+ NGGC
569
+ NGGG
570
+ NGGU
571
+ NGGN
572
+ NGUA
573
+ NGUC
574
+ NGUG
575
+ NGUU
576
+ NGUN
577
+ NGNA
578
+ NGNC
579
+ NGNG
580
+ NGNU
581
+ NGNN
582
+ NUAA
583
+ NUAC
584
+ NUAG
585
+ NUAU
586
+ NUAN
587
+ NUCA
588
+ NUCC
589
+ NUCG
590
+ NUCU
591
+ NUCN
592
+ NUGA
593
+ NUGC
594
+ NUGG
595
+ NUGU
596
+ NUGN
597
+ NUUA
598
+ NUUC
599
+ NUUG
600
+ NUUU
601
+ NUUN
602
+ NUNA
603
+ NUNC
604
+ NUNG
605
+ NUNU
606
+ NUNN
607
+ NNAA
608
+ NNAC
609
+ NNAG
610
+ NNAU
611
+ NNAN
612
+ NNCA
613
+ NNCC
614
+ NNCG
615
+ NNCU
616
+ NNCN
617
+ NNGA
618
+ NNGC
619
+ NNGG
620
+ NNGU
621
+ NNGN
622
+ NNUA
623
+ NNUC
624
+ NNUG
625
+ NNUU
626
+ NNUN
627
+ NNNA
628
+ NNNC
629
+ NNNG
630
+ NNNU
631
+ NNNN