--- datasets: - mlsum metrics: - rouge model-index: - name: bart-base-turkish-sum results: - task: name: Summarization type: summarization dataset: name: mlsum tu type: mlsum args: tu metrics: - name: Rouge1 type: rouge value: 43.2049 --- # [Mukayese: Turkish NLP Strikes Back](https://arxiv.org/abs/2203.01215) ## Summarization: mukayese/bart-base-turkish-sum _This model is uncased_, it was initialized from scratch and trained only the mlsum/tu dataset with no pre-training. It achieves the following results on the evaluation set: - Rouge1: 43.2049 - Rouge2: 30.7082 - Rougel: 38.1981 - Rougelsum: 39.9453 Check [this](https://arxiv.org/abs/2203.01215) paper for more details on the model and the dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.2+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3 ### Citation ``` @misc{safaya-etal-2022-mukayese, title={Mukayese: Turkish NLP Strikes Back}, author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret}, year={2022}, eprint={2203.01215}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```