mujerry commited on
Commit
3c8795d
·
verified ·
1 Parent(s): 9e00b03

Model save

Browse files
Files changed (2) hide show
  1. README.md +178 -80
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,80 +1,178 @@
1
- ---
2
- license: apache-2.0
3
- base_model: microsoft/swin-tiny-patch4-window7-224
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - imagefolder
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: swin-tiny-patch4-window7-224-finetuned-papsmear
12
- results:
13
- - task:
14
- name: Image Classification
15
- type: image-classification
16
- dataset:
17
- name: imagefolder
18
- type: imagefolder
19
- config: default
20
- split: train
21
- args: default
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.5882352941176471
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # swin-tiny-patch4-window7-224-finetuned-papsmear
32
-
33
- This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 1.1058
36
- - Accuracy: 0.5882
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 5e-05
56
- - train_batch_size: 32
57
- - eval_batch_size: 32
58
- - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 128
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 3
65
-
66
- ### Training results
67
-
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:------:|:----:|:---------------:|:--------:|
70
- | No log | 0.9231 | 9 | 1.4240 | 0.3529 |
71
- | 1.5837 | 1.9487 | 19 | 1.1058 | 0.5882 |
72
- | 1.245 | 2.7692 | 27 | 1.0397 | 0.5882 |
73
-
74
-
75
- ### Framework versions
76
-
77
- - Transformers 4.42.4
78
- - Pytorch 2.4.0+cu121
79
- - Datasets 2.21.0
80
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/swin-tiny-patch4-window7-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: swin-tiny-patch4-window7-224-finetuned-papsmear
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9779411764705882
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # swin-tiny-patch4-window7-224-finetuned-papsmear
33
+
34
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.3036
37
+ - Accuracy: 0.9779
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 32
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 100
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
71
+ | 1.7081 | 0.9935 | 38 | 1.6642 | 0.2868 |
72
+ | 1.4025 | 1.9869 | 76 | 1.3761 | 0.4632 |
73
+ | 1.0918 | 2.9804 | 114 | 1.0276 | 0.5515 |
74
+ | 0.8051 | 4.0 | 153 | 0.7679 | 0.6691 |
75
+ | 0.635 | 4.9935 | 191 | 0.5928 | 0.7868 |
76
+ | 0.6051 | 5.9869 | 229 | 0.6957 | 0.75 |
77
+ | 0.5539 | 6.9804 | 267 | 0.5016 | 0.7941 |
78
+ | 0.4683 | 8.0 | 306 | 0.4733 | 0.8235 |
79
+ | 0.4153 | 8.9935 | 344 | 0.4835 | 0.8529 |
80
+ | 0.3954 | 9.9869 | 382 | 0.5431 | 0.8309 |
81
+ | 0.3524 | 10.9804 | 420 | 0.4061 | 0.8235 |
82
+ | 0.3546 | 12.0 | 459 | 0.4925 | 0.8382 |
83
+ | 0.2922 | 12.9935 | 497 | 0.3637 | 0.875 |
84
+ | 0.2342 | 13.9869 | 535 | 0.3286 | 0.8971 |
85
+ | 0.2083 | 14.9804 | 573 | 0.3271 | 0.8824 |
86
+ | 0.2704 | 16.0 | 612 | 0.3700 | 0.8824 |
87
+ | 0.1871 | 16.9935 | 650 | 0.3447 | 0.8971 |
88
+ | 0.226 | 17.9869 | 688 | 0.4280 | 0.8603 |
89
+ | 0.245 | 18.9804 | 726 | 0.6445 | 0.8088 |
90
+ | 0.1545 | 20.0 | 765 | 0.4180 | 0.8603 |
91
+ | 0.0981 | 20.9935 | 803 | 0.3208 | 0.9044 |
92
+ | 0.1455 | 21.9869 | 841 | 0.4256 | 0.8603 |
93
+ | 0.2405 | 22.9804 | 879 | 0.3474 | 0.8971 |
94
+ | 0.1549 | 24.0 | 918 | 0.3940 | 0.9044 |
95
+ | 0.1721 | 24.9935 | 956 | 0.4279 | 0.8824 |
96
+ | 0.1378 | 25.9869 | 994 | 0.3871 | 0.9044 |
97
+ | 0.0924 | 26.9804 | 1032 | 0.7301 | 0.8456 |
98
+ | 0.1325 | 28.0 | 1071 | 0.3712 | 0.9044 |
99
+ | 0.1426 | 28.9935 | 1109 | 0.4400 | 0.8603 |
100
+ | 0.0866 | 29.9869 | 1147 | 0.2779 | 0.9412 |
101
+ | 0.0659 | 30.9804 | 1185 | 0.3207 | 0.9412 |
102
+ | 0.1175 | 32.0 | 1224 | 0.4339 | 0.9044 |
103
+ | 0.0455 | 32.9935 | 1262 | 0.4537 | 0.9265 |
104
+ | 0.1006 | 33.9869 | 1300 | 0.6521 | 0.875 |
105
+ | 0.033 | 34.9804 | 1338 | 0.5616 | 0.9044 |
106
+ | 0.0979 | 36.0 | 1377 | 0.3718 | 0.9191 |
107
+ | 0.1045 | 36.9935 | 1415 | 0.2529 | 0.9632 |
108
+ | 0.0815 | 37.9869 | 1453 | 0.3511 | 0.9338 |
109
+ | 0.0761 | 38.9804 | 1491 | 0.3114 | 0.9338 |
110
+ | 0.0747 | 40.0 | 1530 | 0.2837 | 0.9338 |
111
+ | 0.0545 | 40.9935 | 1568 | 0.4269 | 0.9412 |
112
+ | 0.0796 | 41.9869 | 1606 | 0.2331 | 0.9412 |
113
+ | 0.055 | 42.9804 | 1644 | 0.2900 | 0.9485 |
114
+ | 0.0706 | 44.0 | 1683 | 0.3368 | 0.9632 |
115
+ | 0.0505 | 44.9935 | 1721 | 0.3780 | 0.9485 |
116
+ | 0.0698 | 45.9869 | 1759 | 0.4822 | 0.9191 |
117
+ | 0.0275 | 46.9804 | 1797 | 0.3434 | 0.9632 |
118
+ | 0.0641 | 48.0 | 1836 | 0.3387 | 0.9706 |
119
+ | 0.0484 | 48.9935 | 1874 | 0.5350 | 0.9191 |
120
+ | 0.0388 | 49.9869 | 1912 | 0.3826 | 0.9118 |
121
+ | 0.0347 | 50.9804 | 1950 | 0.3739 | 0.9559 |
122
+ | 0.1046 | 52.0 | 1989 | 0.3075 | 0.9118 |
123
+ | 0.0298 | 52.9935 | 2027 | 0.3558 | 0.9559 |
124
+ | 0.0478 | 53.9869 | 2065 | 0.3056 | 0.9706 |
125
+ | 0.0285 | 54.9804 | 2103 | 0.2851 | 0.9632 |
126
+ | 0.0407 | 56.0 | 2142 | 0.3223 | 0.9559 |
127
+ | 0.0459 | 56.9935 | 2180 | 0.4575 | 0.9485 |
128
+ | 0.0409 | 57.9869 | 2218 | 0.2930 | 0.9632 |
129
+ | 0.0743 | 58.9804 | 2256 | 0.4032 | 0.9485 |
130
+ | 0.0346 | 60.0 | 2295 | 0.3738 | 0.9412 |
131
+ | 0.0302 | 60.9935 | 2333 | 0.3597 | 0.9485 |
132
+ | 0.0488 | 61.9869 | 2371 | 0.2595 | 0.9559 |
133
+ | 0.0562 | 62.9804 | 2409 | 0.3764 | 0.9412 |
134
+ | 0.0216 | 64.0 | 2448 | 0.2644 | 0.9779 |
135
+ | 0.0219 | 64.9935 | 2486 | 0.3092 | 0.9632 |
136
+ | 0.0272 | 65.9869 | 2524 | 0.2898 | 0.9632 |
137
+ | 0.027 | 66.9804 | 2562 | 0.2693 | 0.9632 |
138
+ | 0.0397 | 68.0 | 2601 | 0.3843 | 0.9412 |
139
+ | 0.0154 | 68.9935 | 2639 | 0.3051 | 0.9485 |
140
+ | 0.0004 | 69.9869 | 2677 | 0.3909 | 0.9412 |
141
+ | 0.0651 | 70.9804 | 2715 | 0.2977 | 0.9485 |
142
+ | 0.016 | 72.0 | 2754 | 0.2695 | 0.9632 |
143
+ | 0.0351 | 72.9935 | 2792 | 0.2720 | 0.9706 |
144
+ | 0.0206 | 73.9869 | 2830 | 0.2549 | 0.9706 |
145
+ | 0.0109 | 74.9804 | 2868 | 0.2412 | 0.9706 |
146
+ | 0.0012 | 76.0 | 2907 | 0.3494 | 0.9779 |
147
+ | 0.0418 | 76.9935 | 2945 | 0.3729 | 0.9632 |
148
+ | 0.0165 | 77.9869 | 2983 | 0.3471 | 0.9632 |
149
+ | 0.0163 | 78.9804 | 3021 | 0.2973 | 0.9706 |
150
+ | 0.0202 | 80.0 | 3060 | 0.3730 | 0.9559 |
151
+ | 0.0368 | 80.9935 | 3098 | 0.2877 | 0.9706 |
152
+ | 0.0374 | 81.9869 | 3136 | 0.4143 | 0.9632 |
153
+ | 0.0296 | 82.9804 | 3174 | 0.2895 | 0.9779 |
154
+ | 0.0405 | 84.0 | 3213 | 0.2927 | 0.9559 |
155
+ | 0.0097 | 84.9935 | 3251 | 0.3179 | 0.9632 |
156
+ | 0.0182 | 85.9869 | 3289 | 0.3047 | 0.9706 |
157
+ | 0.0207 | 86.9804 | 3327 | 0.3018 | 0.9779 |
158
+ | 0.0207 | 88.0 | 3366 | 0.3321 | 0.9632 |
159
+ | 0.003 | 88.9935 | 3404 | 0.3086 | 0.9706 |
160
+ | 0.0157 | 89.9869 | 3442 | 0.2948 | 0.9706 |
161
+ | 0.0428 | 90.9804 | 3480 | 0.3175 | 0.9706 |
162
+ | 0.0189 | 92.0 | 3519 | 0.3240 | 0.9632 |
163
+ | 0.0046 | 92.9935 | 3557 | 0.3414 | 0.9632 |
164
+ | 0.0057 | 93.9869 | 3595 | 0.3329 | 0.9632 |
165
+ | 0.0165 | 94.9804 | 3633 | 0.3240 | 0.9632 |
166
+ | 0.006 | 96.0 | 3672 | 0.3180 | 0.9706 |
167
+ | 0.0172 | 96.9935 | 3710 | 0.3103 | 0.9779 |
168
+ | 0.0109 | 97.9869 | 3748 | 0.3035 | 0.9779 |
169
+ | 0.0172 | 98.9804 | 3786 | 0.3034 | 0.9779 |
170
+ | 0.0219 | 99.3464 | 3800 | 0.3036 | 0.9779 |
171
+
172
+
173
+ ### Framework versions
174
+
175
+ - Transformers 4.44.2
176
+ - Pytorch 2.4.0+cu118
177
+ - Datasets 2.21.0
178
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e4b991e6280b908d886ffffa23829cac312447184127d5a895c9f5397dee595
3
  size 110355136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fec7041b3e276471e1b4f5b48eb89f8da91b807fa5fe8386f0ed09abdae9e6eb
3
  size 110355136