muhtasham commited on
Commit
798053b
1 Parent(s): 10abb63

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - wikiann
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: tajberto-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: wikiann
19
+ type: wikiann
20
+ config: tg
21
+ split: train+test
22
+ args: tg
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.576
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.6923076923076923
30
+ - name: F1
31
+ type: f1
32
+ value: 0.62882096069869
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.8934049079754601
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # tajberto-ner
42
+
43
+ This model is a fine-tuned version of [muhtasham/TajBERTo](https://huggingface.co/muhtasham/TajBERTo) on the wikiann dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.6129
46
+ - Precision: 0.576
47
+ - Recall: 0.6923
48
+ - F1: 0.6288
49
+ - Accuracy: 0.8934
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 8
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 200
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | No log | 2.0 | 50 | 0.6171 | 0.1667 | 0.2885 | 0.2113 | 0.7646 |
81
+ | No log | 4.0 | 100 | 0.4733 | 0.2824 | 0.4615 | 0.3504 | 0.8344 |
82
+ | No log | 6.0 | 150 | 0.3857 | 0.3372 | 0.5577 | 0.4203 | 0.8589 |
83
+ | No log | 8.0 | 200 | 0.4523 | 0.4519 | 0.5865 | 0.5105 | 0.8765 |
84
+ | No log | 10.0 | 250 | 0.3870 | 0.44 | 0.6346 | 0.5197 | 0.8834 |
85
+ | No log | 12.0 | 300 | 0.4512 | 0.5267 | 0.6635 | 0.5872 | 0.8865 |
86
+ | No log | 14.0 | 350 | 0.4934 | 0.4789 | 0.6538 | 0.5528 | 0.8819 |
87
+ | No log | 16.0 | 400 | 0.4924 | 0.4783 | 0.6346 | 0.5455 | 0.8842 |
88
+ | No log | 18.0 | 450 | 0.5355 | 0.4595 | 0.6538 | 0.5397 | 0.8788 |
89
+ | 0.1682 | 20.0 | 500 | 0.5440 | 0.5547 | 0.6827 | 0.6121 | 0.8942 |
90
+ | 0.1682 | 22.0 | 550 | 0.5299 | 0.5794 | 0.7019 | 0.6348 | 0.9003 |
91
+ | 0.1682 | 24.0 | 600 | 0.5735 | 0.5691 | 0.6731 | 0.6167 | 0.8926 |
92
+ | 0.1682 | 26.0 | 650 | 0.6027 | 0.5833 | 0.6731 | 0.6250 | 0.8796 |
93
+ | 0.1682 | 28.0 | 700 | 0.6119 | 0.568 | 0.6827 | 0.6201 | 0.8934 |
94
+ | 0.1682 | 30.0 | 750 | 0.6098 | 0.5635 | 0.6827 | 0.6174 | 0.8911 |
95
+ | 0.1682 | 32.0 | 800 | 0.6237 | 0.5469 | 0.6731 | 0.6034 | 0.8834 |
96
+ | 0.1682 | 34.0 | 850 | 0.6215 | 0.5530 | 0.7019 | 0.6186 | 0.8842 |
97
+ | 0.1682 | 36.0 | 900 | 0.6179 | 0.5802 | 0.7308 | 0.6468 | 0.8888 |
98
+ | 0.1682 | 38.0 | 950 | 0.6201 | 0.5373 | 0.6923 | 0.6050 | 0.8873 |
99
+ | 0.0007 | 40.0 | 1000 | 0.6114 | 0.5952 | 0.7212 | 0.6522 | 0.8911 |
100
+ | 0.0007 | 42.0 | 1050 | 0.6073 | 0.5625 | 0.6923 | 0.6207 | 0.8896 |
101
+ | 0.0007 | 44.0 | 1100 | 0.6327 | 0.5620 | 0.6538 | 0.6044 | 0.8896 |
102
+ | 0.0007 | 46.0 | 1150 | 0.6129 | 0.576 | 0.6923 | 0.6288 | 0.8934 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.21.2
108
+ - Pytorch 1.12.1+cu113
109
+ - Datasets 2.4.0
110
+ - Tokenizers 0.12.1