update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- wikiann
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: tajberto-ner
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: wikiann
|
19 |
+
type: wikiann
|
20 |
+
config: tg
|
21 |
+
split: train+test
|
22 |
+
args: tg
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.576
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.6923076923076923
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.62882096069869
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.8934049079754601
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# tajberto-ner
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [muhtasham/TajBERTo](https://huggingface.co/muhtasham/TajBERTo) on the wikiann dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.6129
|
46 |
+
- Precision: 0.576
|
47 |
+
- Recall: 0.6923
|
48 |
+
- F1: 0.6288
|
49 |
+
- Accuracy: 0.8934
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 8
|
70 |
+
- eval_batch_size: 8
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 200
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| No log | 2.0 | 50 | 0.6171 | 0.1667 | 0.2885 | 0.2113 | 0.7646 |
|
81 |
+
| No log | 4.0 | 100 | 0.4733 | 0.2824 | 0.4615 | 0.3504 | 0.8344 |
|
82 |
+
| No log | 6.0 | 150 | 0.3857 | 0.3372 | 0.5577 | 0.4203 | 0.8589 |
|
83 |
+
| No log | 8.0 | 200 | 0.4523 | 0.4519 | 0.5865 | 0.5105 | 0.8765 |
|
84 |
+
| No log | 10.0 | 250 | 0.3870 | 0.44 | 0.6346 | 0.5197 | 0.8834 |
|
85 |
+
| No log | 12.0 | 300 | 0.4512 | 0.5267 | 0.6635 | 0.5872 | 0.8865 |
|
86 |
+
| No log | 14.0 | 350 | 0.4934 | 0.4789 | 0.6538 | 0.5528 | 0.8819 |
|
87 |
+
| No log | 16.0 | 400 | 0.4924 | 0.4783 | 0.6346 | 0.5455 | 0.8842 |
|
88 |
+
| No log | 18.0 | 450 | 0.5355 | 0.4595 | 0.6538 | 0.5397 | 0.8788 |
|
89 |
+
| 0.1682 | 20.0 | 500 | 0.5440 | 0.5547 | 0.6827 | 0.6121 | 0.8942 |
|
90 |
+
| 0.1682 | 22.0 | 550 | 0.5299 | 0.5794 | 0.7019 | 0.6348 | 0.9003 |
|
91 |
+
| 0.1682 | 24.0 | 600 | 0.5735 | 0.5691 | 0.6731 | 0.6167 | 0.8926 |
|
92 |
+
| 0.1682 | 26.0 | 650 | 0.6027 | 0.5833 | 0.6731 | 0.6250 | 0.8796 |
|
93 |
+
| 0.1682 | 28.0 | 700 | 0.6119 | 0.568 | 0.6827 | 0.6201 | 0.8934 |
|
94 |
+
| 0.1682 | 30.0 | 750 | 0.6098 | 0.5635 | 0.6827 | 0.6174 | 0.8911 |
|
95 |
+
| 0.1682 | 32.0 | 800 | 0.6237 | 0.5469 | 0.6731 | 0.6034 | 0.8834 |
|
96 |
+
| 0.1682 | 34.0 | 850 | 0.6215 | 0.5530 | 0.7019 | 0.6186 | 0.8842 |
|
97 |
+
| 0.1682 | 36.0 | 900 | 0.6179 | 0.5802 | 0.7308 | 0.6468 | 0.8888 |
|
98 |
+
| 0.1682 | 38.0 | 950 | 0.6201 | 0.5373 | 0.6923 | 0.6050 | 0.8873 |
|
99 |
+
| 0.0007 | 40.0 | 1000 | 0.6114 | 0.5952 | 0.7212 | 0.6522 | 0.8911 |
|
100 |
+
| 0.0007 | 42.0 | 1050 | 0.6073 | 0.5625 | 0.6923 | 0.6207 | 0.8896 |
|
101 |
+
| 0.0007 | 44.0 | 1100 | 0.6327 | 0.5620 | 0.6538 | 0.6044 | 0.8896 |
|
102 |
+
| 0.0007 | 46.0 | 1150 | 0.6129 | 0.576 | 0.6923 | 0.6288 | 0.8934 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.21.2
|
108 |
+
- Pytorch 1.12.1+cu113
|
109 |
+
- Datasets 2.4.0
|
110 |
+
- Tokenizers 0.12.1
|