--- base_model: openbmb/MiniCPM-V-2_6 library_name: peft tags: - generated_from_trainer model-index: - name: MiniCPM-V-2_6_lora_20240915_181155 results: [] --- # MiniCPM-V-2_6_lora_20240915_181155 This model is a fine-tuned version of [openbmb/MiniCPM-V-2_6](https://huggingface.co./openbmb/MiniCPM-V-2_6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1465 | 0.7055 | 100 | 0.1790 | | 0.0339 | 1.4109 | 200 | 0.1891 | | 0.033 | 2.1164 | 300 | 0.1994 | | 0.0333 | 2.8219 | 400 | 0.1966 | ### Framework versions - PEFT 0.12.0 - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Tokenizers 0.19.1