muhtasham commited on
Commit
59529fb
1 Parent(s): b7734af

Upload 8 files

Browse files
configuration_minicpm.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """ MiniCPMV model configuration"""
3
+
4
+ import os
5
+ from typing import Union
6
+
7
+ from transformers.utils import logging
8
+ from transformers import Qwen2Config, PretrainedConfig
9
+ from .modeling_navit_siglip import SiglipVisionConfig
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class MiniCPMVSliceConfig(PretrainedConfig):
15
+ model_type = "minicpmv"
16
+
17
+ def __init__(
18
+ self,
19
+ patch_size=14,
20
+ max_slice_nums=9,
21
+ scale_resolution=448,
22
+ **kwargs,
23
+ ):
24
+ super().__init__(**kwargs)
25
+ self.patch_size = patch_size
26
+ self.max_slice_nums = max_slice_nums
27
+ self.scale_resolution = scale_resolution
28
+
29
+ @classmethod
30
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
31
+ cls._set_token_in_kwargs(kwargs)
32
+
33
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
34
+
35
+ if config_dict.get("model_type") == "minicpmv":
36
+ config_dict = config_dict["slice_config"]
37
+
38
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
39
+ logger.warning(
40
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
41
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
42
+ )
43
+
44
+ return cls.from_dict(config_dict, **kwargs)
45
+
46
+
47
+
48
+ class MiniCPMVConfig(Qwen2Config):
49
+ model_type = "minicpmv"
50
+ keys_to_ignore_at_inference = ["past_key_values"]
51
+
52
+ default_vision_config = {
53
+ "hidden_size": 1152,
54
+ "image_size": 980,
55
+ "intermediate_size": 4304,
56
+ "model_type": "siglip",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 27,
59
+ "patch_size": 14,
60
+ }
61
+
62
+ def __init__(
63
+ self,
64
+ use_cache=True,
65
+ query_num=64,
66
+ image_size=448,
67
+ drop_vision_last_layer=True,
68
+ batch_vision_input=True,
69
+ slice_config=None,
70
+ vision_config=None,
71
+ use_image_id=True,
72
+ vision_batch_size=16,
73
+ **kwargs,
74
+ ):
75
+ self.use_cache = use_cache
76
+ self.query_num = query_num
77
+ self.image_size = image_size
78
+ self.drop_vision_last_layer = drop_vision_last_layer
79
+ self.batch_vision_input = batch_vision_input
80
+ self.use_image_id = use_image_id
81
+ self.vision_batch_size = vision_batch_size
82
+
83
+ if slice_config is None:
84
+ self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
85
+ else:
86
+ self.slice_config = MiniCPMVSliceConfig(**slice_config)
87
+ self.slice_mode = True
88
+
89
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
90
+ if vision_config is None:
91
+ self.vision_config = SiglipVisionConfig(**self.default_vision_config)
92
+ logger.info("vision_config is None, using default vision config")
93
+ elif isinstance(vision_config, dict):
94
+ self.vision_config = SiglipVisionConfig(**vision_config)
95
+ elif isinstance(vision_config, SiglipVisionConfig):
96
+ self.vision_config = vision_config
97
+
98
+ self.patch_size = self.vision_config.patch_size
99
+
100
+ super().__init__(**kwargs)
image_processing_minicpmv.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union, Dict, Any, List
2
+
3
+ import torch
4
+ import math
5
+ import PIL.Image
6
+ import PIL.ImageSequence
7
+ import numpy as np
8
+ import PIL
9
+ from PIL import Image
10
+
11
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
12
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
13
+ from transformers import AutoImageProcessor
14
+ from transformers.image_transforms import to_channel_dimension_format
15
+ from transformers.image_utils import (
16
+ ImageInput,
17
+ make_list_of_images,
18
+ valid_images,
19
+ is_torch_tensor,
20
+ is_batched,
21
+ to_numpy_array,
22
+ infer_channel_dimension_format,
23
+ ChannelDimension
24
+ )
25
+
26
+
27
+ def recursive_converter(converter, value):
28
+ if isinstance(value, list):
29
+ new_value = []
30
+ for v in value:
31
+ new_value += [recursive_converter(converter, v)]
32
+ return new_value
33
+ else:
34
+ return converter(value)
35
+
36
+
37
+ class MiniCPMVBatchFeature(BatchFeature):
38
+ r"""
39
+ Extend from BatchFeature for supporting various image size
40
+ """
41
+ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
42
+ super().__init__(data)
43
+ self.convert_to_tensors(tensor_type=tensor_type)
44
+
45
+ def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
46
+ if tensor_type is None:
47
+ return self
48
+
49
+ is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
50
+
51
+ def converter(value):
52
+ try:
53
+ if not is_tensor(value):
54
+ tensor = as_tensor(value)
55
+ return tensor
56
+ except: # noqa E722
57
+ if key == "overflowing_values":
58
+ raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
59
+ raise ValueError(
60
+ "Unable to create tensor, you should probably activate padding "
61
+ "with 'padding=True' to have batched tensors with the same length."
62
+ )
63
+
64
+
65
+ for key, value in self.items():
66
+ self[key] = recursive_converter(converter, value)
67
+ return self
68
+
69
+ def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
70
+ requires_backends(self, ["torch"])
71
+ import torch
72
+
73
+ def cast_tensor(v):
74
+ # check if v is a floating point
75
+ if torch.is_floating_point(v):
76
+ # cast and send to device
77
+ return v.to(*args, **kwargs)
78
+ elif device is not None:
79
+ return v.to(device=device)
80
+ else:
81
+ return v
82
+
83
+ new_data = {}
84
+ device = kwargs.get("device")
85
+ # Check if the args are a device or a dtype
86
+ if device is None and len(args) > 0:
87
+ # device should be always the first argument
88
+ arg = args[0]
89
+ if is_torch_dtype(arg):
90
+ # The first argument is a dtype
91
+ pass
92
+ elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
93
+ device = arg
94
+ else:
95
+ # it's something else
96
+ raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
97
+ # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
98
+ for k, v in self.items():
99
+ new_data[k] = recursive_converter(cast_tensor, v)
100
+ self.data = new_data
101
+ return self
102
+
103
+
104
+ class MiniCPMVImageProcessor(BaseImageProcessor):
105
+ model_input_names = ["pixel_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ max_slice_nums=9,
110
+ scale_resolution=448,
111
+ patch_size=14,
112
+ **kwargs):
113
+ super().__init__(**kwargs)
114
+ self.max_slice_nums = max_slice_nums
115
+ self.scale_resolution = scale_resolution
116
+ self.patch_size = patch_size
117
+ self.use_image_id = kwargs.pop("use_image_id", False)
118
+ self.image_feature_size = kwargs.pop("image_feature_size", 64)
119
+ self.im_start_token = kwargs.pop("im_start", "<image>")
120
+ self.im_end_token = kwargs.pop("im_end", "</image>")
121
+ self.slice_start_token = kwargs.pop("slice_start", "<slice>")
122
+ self.slice_end_token = kwargs.pop("slice_end", "</slice>")
123
+ self.unk_token = kwargs.pop("unk", "<unk>")
124
+ self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
125
+ self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
126
+ self.slice_mode = kwargs.pop("slice_mode", True)
127
+ self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
128
+ self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
129
+ self.version = kwargs.pop("version", 2.0)
130
+
131
+ def ensure_divide(self, length, patch_size):
132
+ return max(round(length / patch_size) * patch_size, patch_size)
133
+
134
+ def find_best_resize(self,
135
+ original_size,
136
+ scale_resolution,
137
+ patch_size,
138
+ allow_upscale=False):
139
+ width, height = original_size
140
+ if (width * height >
141
+ scale_resolution * scale_resolution) or allow_upscale:
142
+ r = width / height
143
+ height = int(scale_resolution / math.sqrt(r))
144
+ width = int(height * r)
145
+ best_width = self.ensure_divide(width, patch_size)
146
+ best_height = self.ensure_divide(height, patch_size)
147
+ return (best_width, best_height)
148
+
149
+ def get_refine_size(self,
150
+ original_size,
151
+ grid,
152
+ scale_resolution,
153
+ patch_size,
154
+ allow_upscale=False):
155
+ width, height = original_size
156
+ grid_x, grid_y = grid
157
+
158
+ refine_width = self.ensure_divide(width, grid_x)
159
+ refine_height = self.ensure_divide(height, grid_y)
160
+
161
+ grid_width = refine_width / grid_x
162
+ grid_height = refine_height / grid_y
163
+
164
+ best_grid_size = self.find_best_resize((grid_width, grid_height),
165
+ scale_resolution,
166
+ patch_size,
167
+ allow_upscale=allow_upscale)
168
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
169
+ return refine_size
170
+
171
+ def split_to_patches(self, image, grid):
172
+ patches = []
173
+ width, height = image.size
174
+ grid_x = int(width / grid[0])
175
+ grid_y = int(height / grid[1])
176
+ for i in range(0, height, grid_y):
177
+ images = []
178
+ for j in range(0, width, grid_x):
179
+ box = (j, i, j + grid_x, i + grid_y)
180
+ patch = image.crop(box)
181
+ images.append(patch)
182
+ patches.append(images)
183
+ return patches
184
+
185
+ def slice_image(
186
+ self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
187
+ ):
188
+ original_size = image.size
189
+ source_image = None
190
+ best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
191
+ patches = []
192
+
193
+ if best_grid is None:
194
+ # dont need to slice, upsample
195
+ best_size = self.find_best_resize(
196
+ original_size, scale_resolution, patch_size, allow_upscale=True
197
+ )
198
+ source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
199
+ else:
200
+ # source image, down-sampling and ensure divided by patch_size
201
+ best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
202
+ source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
203
+ refine_size = self.get_refine_size(
204
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
205
+ )
206
+ refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
207
+ patches = self.split_to_patches(refine_image, best_grid)
208
+
209
+ return source_image, patches, best_grid
210
+
211
+ def get_grid_placeholder(self, grid):
212
+ if grid is None:
213
+ return ""
214
+ slice_image_placeholder = (
215
+ self.slice_start_token
216
+ + self.unk_token * self.image_feature_size
217
+ + self.slice_end_token
218
+ )
219
+
220
+ cols = grid[0]
221
+ rows = grid[1]
222
+ slices = []
223
+ for i in range(rows):
224
+ lines = []
225
+ for j in range(cols):
226
+ lines.append(slice_image_placeholder)
227
+ slices.append("".join(lines))
228
+
229
+ slice_placeholder = "\n".join(slices)
230
+ return slice_placeholder
231
+
232
+ def get_image_id_placeholder(self, idx=0):
233
+ return f"{self.im_id_start}{idx}{self.im_id_end}"
234
+
235
+ def get_sliced_images(self, image, max_slice_nums=None):
236
+ slice_images = []
237
+
238
+ if not self.slice_mode:
239
+ return [image]
240
+
241
+ max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
242
+ assert max_slice_nums > 0
243
+ source_image, patches, sliced_grid = self.slice_image(
244
+ image,
245
+ max_slice_nums, # default: 9
246
+ self.scale_resolution, # default: 448
247
+ self.patch_size # default: 14
248
+ )
249
+
250
+ slice_images.append(source_image)
251
+ if len(patches) > 0:
252
+ for i in range(len(patches)):
253
+ for j in range(len(patches[0])):
254
+ slice_images.append(patches[i][j])
255
+ return slice_images
256
+
257
+ def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
258
+ original_width, original_height = image_size
259
+ log_ratio = math.log(original_width / original_height)
260
+ ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
261
+ multiple = min(math.ceil(ratio), max_slice_nums)
262
+ if multiple <= 1 or nerver_split:
263
+ return None
264
+ candidate_split_grids_nums = []
265
+ for i in [multiple - 1, multiple, multiple + 1]:
266
+ if i == 1 or i > max_slice_nums:
267
+ continue
268
+ candidate_split_grids_nums.append(i)
269
+
270
+ candidate_grids = []
271
+ for split_grids_nums in candidate_split_grids_nums:
272
+ m = 1
273
+ while m <= split_grids_nums:
274
+ if split_grids_nums % m == 0:
275
+ candidate_grids.append([m, split_grids_nums // m])
276
+ m += 1
277
+
278
+ best_grid = [1, 1]
279
+ min_error = float("inf")
280
+ for grid in candidate_grids:
281
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
282
+ if error < min_error:
283
+ best_grid = grid
284
+ min_error = error
285
+
286
+ return best_grid
287
+
288
+ def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
289
+ max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
290
+ assert max_slice_nums > 0
291
+ grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
292
+
293
+ image_placeholder = (
294
+ self.im_start_token
295
+ + self.unk_token * self.image_feature_size
296
+ + self.im_end_token
297
+ )
298
+ use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
299
+ if use_image_id:
300
+ final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
301
+ else:
302
+ final_placeholder = image_placeholder
303
+
304
+ if self.slice_mode:
305
+ final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
306
+ return final_placeholder
307
+
308
+ def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
309
+ """
310
+ Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
311
+ needed.
312
+
313
+ Args:
314
+ image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
315
+ The image to convert to the PIL Image format.
316
+ rescale (`bool`, *optional*):
317
+ Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
318
+ default to `True` if the image type is a floating type, `False` otherwise.
319
+ """
320
+ if isinstance(image, PIL.Image.Image):
321
+ return image
322
+ if is_torch_tensor(image):
323
+ image = image.numpy()
324
+
325
+ if isinstance(image, np.ndarray):
326
+ if rescale is None:
327
+ # rescale default to the array being of floating type.
328
+ rescale = isinstance(image.flat[0], np.floating)
329
+ # If the channel as been moved to first dim, we put it back at the end.
330
+ if image.ndim == 3 and image.shape[0] in [1, 3]:
331
+ image = image.transpose(1, 2, 0)
332
+ if rescale:
333
+ image = image * 255
334
+ image = image.astype(np.uint8)
335
+ return PIL.Image.fromarray(image)
336
+ return image
337
+
338
+ def reshape_by_patch(self, image):
339
+ """
340
+ :param image: shape [3, H, W]
341
+ :param patch_size:
342
+ :return: [3, patch_size, HW/patch_size]
343
+ """
344
+ image = torch.from_numpy(image)
345
+ patch_size = self.patch_size
346
+ patches = torch.nn.functional.unfold(
347
+ image,
348
+ (patch_size, patch_size),
349
+ stride=(patch_size, patch_size)
350
+ )
351
+
352
+ patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
353
+ patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
354
+ return patches.numpy()
355
+
356
+ def preprocess(
357
+ self,
358
+ images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
359
+ do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
360
+ max_slice_nums: int = None,
361
+ return_tensors: Optional[Union[str, TensorType]] = None,
362
+ **kwargs
363
+ ) -> MiniCPMVBatchFeature:
364
+ if isinstance(images, Image.Image):
365
+ images_list = [[images]]
366
+ elif isinstance(images[0], Image.Image):
367
+ images_list = [images]
368
+ else:
369
+ images_list = images
370
+
371
+ new_images_list = []
372
+ image_sizes_list = []
373
+ tgt_sizes_list = []
374
+
375
+ for _images in images_list:
376
+ if _images is None or len(_images) == 0:
377
+ new_images_list.append([])
378
+ image_sizes_list.append([])
379
+ tgt_sizes_list.append([])
380
+ continue
381
+ if not valid_images(_images):
382
+ raise ValueError(
383
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
384
+ "torch.Tensor, tf.Tensor or jax.ndarray."
385
+ )
386
+
387
+ _images = [self.to_pil_image(image).convert("RGB") for image in _images]
388
+ input_data_format = infer_channel_dimension_format(np.array(_images[0]))
389
+
390
+ new_images = []
391
+ image_sizes = [image.size for image in _images]
392
+ tgt_sizes = []
393
+ for image in _images:
394
+ image_patches = self.get_sliced_images(image, max_slice_nums)
395
+ image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
396
+ image_patches = [
397
+ self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
398
+ for image in image_patches
399
+ ]
400
+ image_patches = [
401
+ to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
402
+ for image in image_patches
403
+ ]
404
+ for slice_image in image_patches:
405
+ new_images.append(self.reshape_by_patch(slice_image))
406
+ tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
407
+
408
+ if tgt_sizes:
409
+ tgt_sizes = np.vstack(tgt_sizes)
410
+
411
+ new_images_list.append(new_images)
412
+ image_sizes_list.append(image_sizes)
413
+ tgt_sizes_list.append(tgt_sizes)
414
+ return MiniCPMVBatchFeature(
415
+ data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list}, tensor_type=return_tensors
416
+ )
417
+
418
+ AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
modeling_minicpmv.py ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional
3
+ import json
4
+ import torch
5
+ import torchvision
6
+
7
+ from threading import Thread
8
+ from copy import deepcopy
9
+ from PIL import Image
10
+ from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer
11
+
12
+ from .configuration_minicpm import MiniCPMVConfig
13
+ from .modeling_navit_siglip import SiglipVisionTransformer
14
+ from .resampler import Resampler
15
+
16
+
17
+
18
+ class MiniCPMVPreTrainedModel(Qwen2PreTrainedModel):
19
+ config_class = MiniCPMVConfig
20
+
21
+
22
+ class MiniCPMV(MiniCPMVPreTrainedModel):
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ self.llm = Qwen2ForCausalLM(config)
26
+ self.vpm = self.init_vision_module()
27
+ self.vision_dim = self.vpm.embed_dim
28
+ self.embed_dim = self.llm.config.hidden_size
29
+ self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
30
+ self.processor = None
31
+
32
+ self.terminators = ['<|im_end|>', '<|endoftext|>']
33
+
34
+ def init_vision_module(self):
35
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
36
+ if self.config._attn_implementation == 'flash_attention_2':
37
+ self.config.vision_config._attn_implementation = 'flash_attention_2'
38
+ else:
39
+ # not suport sdpa
40
+ self.config.vision_config._attn_implementation = 'eager'
41
+ model = SiglipVisionTransformer(self.config.vision_config)
42
+ if self.config.drop_vision_last_layer:
43
+ model.encoder.layers = model.encoder.layers[:-1]
44
+
45
+ setattr(model, 'embed_dim', model.embeddings.embed_dim)
46
+ setattr(model, 'patch_size', model.embeddings.patch_size)
47
+
48
+ return model
49
+
50
+ def init_resampler(self, embed_dim, vision_dim):
51
+ return Resampler(
52
+ num_queries=self.config.query_num,
53
+ embed_dim=embed_dim,
54
+ num_heads=embed_dim // 128,
55
+ kv_dim=vision_dim,
56
+ adaptive=True
57
+ )
58
+
59
+ def get_input_embeddings(self):
60
+ return self.llm.get_input_embeddings()
61
+
62
+ def set_input_embeddings(self, value):
63
+ self.llm.embed_tokens = value
64
+
65
+ def get_output_embeddings(self):
66
+ return self.llm.lm_head
67
+
68
+ def set_output_embeddings(self, new_embeddings):
69
+ self.llm.lm_head = new_embeddings
70
+
71
+ def set_decoder(self, decoder):
72
+ self.llm = decoder
73
+
74
+ def get_decoder(self):
75
+ return self.llm
76
+
77
+ def get_vllm_embedding(self, data):
78
+ if 'vision_hidden_states' not in data:
79
+ dtype = self.llm.model.embed_tokens.weight.dtype
80
+ device = self.llm.model.embed_tokens.weight.device
81
+ tgt_sizes = data['tgt_sizes']
82
+ pixel_values_list = data['pixel_values']
83
+ vision_hidden_states = []
84
+ all_pixel_values = []
85
+ img_cnt = []
86
+ for pixel_values in pixel_values_list:
87
+ img_cnt.append(len(pixel_values))
88
+ all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
89
+
90
+ # exist image
91
+ if all_pixel_values:
92
+ tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
93
+ tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
94
+
95
+ max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
96
+
97
+ all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
98
+ padding_value=0.0)
99
+ B, L, _ = all_pixel_values.shape
100
+ all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
101
+
102
+ patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
103
+ for i in range(B):
104
+ patch_attn_mask[i, 0, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
105
+
106
+ vision_batch_size = self.config.vision_batch_size
107
+ all_pixel_values = all_pixel_values.type(dtype)
108
+ if B > vision_batch_size:
109
+ hs = []
110
+ for i in range(0, B, vision_batch_size):
111
+ start_idx = i
112
+ end_idx = i + vision_batch_size
113
+ tmp_hs = self.vpm(all_pixel_values[start_idx:end_idx], patch_attention_mask=patch_attn_mask[start_idx:end_idx], tgt_sizes=tgt_sizes[start_idx:end_idx]).last_hidden_state
114
+ hs.append(tmp_hs)
115
+ vision_embedding = torch.cat(hs, dim=0)
116
+ else:
117
+ vision_embedding = self.vpm(all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes).last_hidden_state
118
+ vision_embedding = self.resampler(vision_embedding, tgt_sizes)
119
+
120
+ start = 0
121
+ for pixel_values in pixel_values_list:
122
+ img_cnt = len(pixel_values)
123
+ if img_cnt > 0:
124
+ vision_hidden_states.append(vision_embedding[start: start + img_cnt])
125
+ start += img_cnt
126
+ else:
127
+ vision_hidden_states.append([])
128
+ else: # no image
129
+ if self.training:
130
+ dummy_image = torch.zeros(
131
+ (1, 3, 224, 224),
132
+ device=device, dtype=dtype
133
+ )
134
+ tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
135
+ dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
136
+ else:
137
+ dummy_feature = []
138
+ for _ in range(len(pixel_values_list)):
139
+ vision_hidden_states.append(dummy_feature)
140
+
141
+ else:
142
+ vision_hidden_states = data['vision_hidden_states']
143
+
144
+ if hasattr(self.llm.config, 'scale_emb'):
145
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
146
+ else:
147
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
148
+
149
+ vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
150
+ i, torch.Tensor) else i for i in vision_hidden_states]
151
+
152
+ bs = len(data['input_ids'])
153
+ for i in range(bs):
154
+ cur_vs_hs = vision_hidden_states[i]
155
+ if len(cur_vs_hs) > 0:
156
+ cur_vllm_emb = vllm_embedding[i]
157
+ cur_image_bound = data['image_bound'][i]
158
+ if len(cur_image_bound) > 0:
159
+ image_indices = torch.stack(
160
+ [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
161
+ ).to(vllm_embedding.device)
162
+
163
+ cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
164
+ cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
165
+ elif self.training:
166
+ cur_vllm_emb += cur_vs_hs[0].mean() * 0
167
+
168
+ return vllm_embedding, vision_hidden_states
169
+
170
+ def forward(self, data, **kwargs):
171
+ vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
172
+ position_ids = data["position_ids"]
173
+ if position_ids.dtype != torch.int64:
174
+ position_ids = position_ids.long()
175
+
176
+ return self.llm(
177
+ input_ids=None,
178
+ position_ids=position_ids,
179
+ inputs_embeds=vllm_embedding,
180
+ **kwargs
181
+ )
182
+
183
+ def _decode(self, inputs_embeds, tokenizer, attention_mask, decode_text=False, **kwargs):
184
+ terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
185
+ output = self.llm.generate(
186
+ inputs_embeds=inputs_embeds,
187
+ pad_token_id=0,
188
+ eos_token_id=terminators,
189
+ attention_mask=attention_mask,
190
+ **kwargs
191
+ )
192
+ if decode_text:
193
+ return self._decode_text(output, tokenizer)
194
+ return output
195
+
196
+ def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
197
+ terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
198
+ streamer = TextIteratorStreamer(tokenizer=tokenizer)
199
+ generation_kwargs = {
200
+ 'inputs_embeds': inputs_embeds,
201
+ 'pad_token_id': 0,
202
+ 'eos_token_id': terminators,
203
+ 'streamer': streamer
204
+ }
205
+ generation_kwargs.update(kwargs)
206
+
207
+ thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
208
+ thread.start()
209
+
210
+ return streamer
211
+
212
+ def _decode_text(self, result_ids, tokenizer):
213
+ terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
214
+ result_text = []
215
+ for result in result_ids:
216
+ result = result[result != 0]
217
+ if result[0] == tokenizer.bos_id:
218
+ result = result[1:]
219
+ if result[-1] in terminators:
220
+ result = result[:-1]
221
+ result_text.append(tokenizer.decode(result).strip())
222
+ return result_text
223
+
224
+ def generate(
225
+ self,
226
+ input_ids=None,
227
+ pixel_values=None,
228
+ tgt_sizes=None,
229
+ image_bound=None,
230
+ attention_mask=None,
231
+ tokenizer=None,
232
+ vision_hidden_states=None,
233
+ return_vision_hidden_states=False,
234
+ stream=False,
235
+ decode_text=False,
236
+ **kwargs
237
+ ):
238
+ assert input_ids is not None
239
+ assert len(input_ids) == len(pixel_values)
240
+
241
+ model_inputs = {
242
+ "input_ids": input_ids,
243
+ "image_bound": image_bound,
244
+ }
245
+
246
+ if vision_hidden_states is None:
247
+ model_inputs["pixel_values"] = pixel_values
248
+ model_inputs['tgt_sizes'] = tgt_sizes
249
+ else:
250
+ model_inputs["vision_hidden_states"] = vision_hidden_states
251
+
252
+ with torch.inference_mode():
253
+ (
254
+ model_inputs["inputs_embeds"],
255
+ vision_hidden_states,
256
+ ) = self.get_vllm_embedding(model_inputs)
257
+
258
+ if stream:
259
+ result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
260
+ else:
261
+ result = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, decode_text=decode_text, **kwargs)
262
+
263
+ if return_vision_hidden_states:
264
+ return result, vision_hidden_states
265
+
266
+ return result
267
+
268
+ def chat(
269
+ self,
270
+ image,
271
+ msgs,
272
+ tokenizer,
273
+ processor=None,
274
+ vision_hidden_states=None,
275
+ max_new_tokens=2048,
276
+ min_new_tokens=0,
277
+ sampling=True,
278
+ temperature=0.7,
279
+ top_p=0.8,
280
+ max_inp_length=8192,
281
+ system_prompt='',
282
+ stream=False,
283
+ max_slice_nums=None,
284
+ use_image_id=None,
285
+ **kwargs
286
+ ):
287
+ if isinstance(msgs[0], list):
288
+ batched = True
289
+ else:
290
+ batched = False
291
+ msgs_list = msgs
292
+ images_list = image
293
+
294
+ if batched is False:
295
+ images_list, msgs_list = [images_list], [msgs_list]
296
+ else:
297
+ assert images_list is None, "Please integrate image to msgs when using batch inference."
298
+ images_list = [None] * len(msgs_list)
299
+ assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
300
+
301
+ if processor is None:
302
+ if self.processor is None:
303
+ self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
304
+ processor = self.processor
305
+
306
+ assert self.config.query_num == processor.image_processor.image_feature_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
307
+ assert self.config.patch_size == processor.image_processor.patch_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
308
+ assert self.config.use_image_id == processor.image_processor.use_image_id, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
309
+ assert self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
310
+ assert self.config.slice_mode == processor.image_processor.slice_mode, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
311
+
312
+ prompts_lists = []
313
+ input_images_lists = []
314
+ for image, msgs in zip(images_list, msgs_list):
315
+ if isinstance(msgs, str):
316
+ msgs = json.loads(msgs)
317
+ copy_msgs = deepcopy(msgs)
318
+
319
+ assert len(msgs) > 0, "msgs is empty"
320
+ assert sampling or not stream, "if use stream mode, make sure sampling=True"
321
+
322
+ if image is not None and isinstance(copy_msgs[0]["content"], str):
323
+ copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
324
+
325
+ images = []
326
+ for i, msg in enumerate(copy_msgs):
327
+ role = msg["role"]
328
+ content = msg["content"]
329
+ assert role in ["user", "assistant"]
330
+ if i == 0:
331
+ assert role == "user", "The role of first msg should be user"
332
+ if isinstance(content, str):
333
+ content = [content]
334
+ cur_msgs = []
335
+ for c in content:
336
+ if isinstance(c, Image.Image):
337
+ images.append(c)
338
+ cur_msgs.append("(<image>./</image>)")
339
+ elif isinstance(c, str):
340
+ cur_msgs.append(c)
341
+ msg["content"] = "\n".join(cur_msgs)
342
+
343
+ if system_prompt:
344
+ sys_msg = {'role': 'system', 'content': system_prompt}
345
+ copy_msgs = [sys_msg] + copy_msgs
346
+
347
+ prompts_lists.append(processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True))
348
+ input_images_lists.append(images)
349
+
350
+ inputs = processor(
351
+ prompts_lists,
352
+ input_images_lists,
353
+ max_slice_nums=max_slice_nums,
354
+ use_image_id=use_image_id,
355
+ return_tensors="pt",
356
+ max_length=max_inp_length
357
+ ).to(self.device)
358
+
359
+ if sampling:
360
+ generation_config = {
361
+ "top_p": top_p,
362
+ "top_k": 100,
363
+ "temperature": temperature,
364
+ "do_sample": True,
365
+ "repetition_penalty": 1.05
366
+ }
367
+ else:
368
+ generation_config = {
369
+ "num_beams": 3,
370
+ "repetition_penalty": 1.2,
371
+ }
372
+
373
+ if min_new_tokens > 0:
374
+ generation_config['min_new_tokens'] = min_new_tokens
375
+
376
+ generation_config.update(
377
+ (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
378
+ )
379
+
380
+ inputs.pop("image_sizes")
381
+ with torch.inference_mode():
382
+ res = self.generate(
383
+ **inputs,
384
+ tokenizer=tokenizer,
385
+ max_new_tokens=max_new_tokens,
386
+ vision_hidden_states=vision_hidden_states,
387
+ stream=stream,
388
+ decode_text=True,
389
+ **generation_config
390
+ )
391
+
392
+ if stream:
393
+ def stream_gen():
394
+ for text in res:
395
+ for term in self.terminators:
396
+ text = text.replace(term, '')
397
+ yield text
398
+ return stream_gen()
399
+
400
+ else:
401
+ if batched:
402
+ answer = res
403
+ else:
404
+ answer = res[0]
405
+ return answer
modeling_navit_siglip.py ADDED
@@ -0,0 +1,937 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Siglip model. """
16
+ # Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
17
+
18
+
19
+ import os
20
+ import math
21
+ import warnings
22
+ from dataclasses import dataclass
23
+ from typing import Any, Optional, Tuple, Union
24
+
25
+ import numpy as np
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn.init import _calculate_fan_in_and_fan_out
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
34
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.configuration_utils import PretrainedConfig
37
+ from transformers.utils import (
38
+ ModelOutput,
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ is_flash_attn_2_available,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from transformers.utils import logging
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ class SiglipVisionConfig(PretrainedConfig):
50
+ r"""
51
+ This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
52
+ Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
53
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
54
+ [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
55
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
56
+ documentation from [`PretrainedConfig`] for more information.
57
+ Args:
58
+ hidden_size (`int`, *optional*, defaults to 768):
59
+ Dimensionality of the encoder layers and the pooler layer.
60
+ intermediate_size (`int`, *optional*, defaults to 3072):
61
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
62
+ num_hidden_layers (`int`, *optional*, defaults to 12):
63
+ Number of hidden layers in the Transformer encoder.
64
+ num_attention_heads (`int`, *optional*, defaults to 12):
65
+ Number of attention heads for each attention layer in the Transformer encoder.
66
+ num_channels (`int`, *optional*, defaults to 3):
67
+ Number of channels in the input images.
68
+ image_size (`int`, *optional*, defaults to 224):
69
+ The size (resolution) of each image.
70
+ patch_size (`int`, *optional*, defaults to 16):
71
+ The size (resolution) of each patch.
72
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
73
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
74
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
75
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
76
+ The epsilon used by the layer normalization layers.
77
+ attention_dropout (`float`, *optional*, defaults to 0.0):
78
+ The dropout ratio for the attention probabilities.
79
+ Example:
80
+ ```python
81
+ >>> from transformers import SiglipVisionConfig, SiglipVisionModel
82
+ >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
83
+ >>> configuration = SiglipVisionConfig()
84
+ >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
85
+ >>> model = SiglipVisionModel(configuration)
86
+ >>> # Accessing the model configuration
87
+ >>> configuration = model.config
88
+ ```"""
89
+
90
+ model_type = "siglip_vision_model"
91
+
92
+ def __init__(
93
+ self,
94
+ hidden_size=768,
95
+ intermediate_size=3072,
96
+ num_hidden_layers=12,
97
+ num_attention_heads=12,
98
+ num_channels=3,
99
+ image_size=224,
100
+ patch_size=16,
101
+ hidden_act="gelu_pytorch_tanh",
102
+ layer_norm_eps=1e-6,
103
+ attention_dropout=0.0,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(**kwargs)
107
+
108
+ self.hidden_size = hidden_size
109
+ self.intermediate_size = intermediate_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.num_channels = num_channels
113
+ self.patch_size = patch_size
114
+ self.image_size = image_size
115
+ self.attention_dropout = attention_dropout
116
+ self.layer_norm_eps = layer_norm_eps
117
+ self.hidden_act = hidden_act
118
+
119
+ @classmethod
120
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
121
+ cls._set_token_in_kwargs(kwargs)
122
+
123
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
124
+
125
+ # get the vision config dict if we are loading from SiglipConfig
126
+ if config_dict.get("model_type") == "siglip":
127
+ config_dict = config_dict["vision_config"]
128
+
129
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
130
+ logger.warning(
131
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
132
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
133
+ )
134
+
135
+ return cls.from_dict(config_dict, **kwargs)
136
+
137
+
138
+ _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
139
+
140
+ SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
141
+ "google/siglip-base-patch16-224",
142
+ # See all SigLIP models at https://huggingface.co/models?filter=siglip
143
+ ]
144
+
145
+ if is_flash_attn_2_available():
146
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
147
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
148
+
149
+
150
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
151
+ def _get_unpad_data(attention_mask):
152
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
153
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
154
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
155
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
156
+ return (
157
+ indices,
158
+ cu_seqlens,
159
+ max_seqlen_in_batch,
160
+ )
161
+
162
+
163
+ def _trunc_normal_(tensor, mean, std, a, b):
164
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
165
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
166
+ def norm_cdf(x):
167
+ # Computes standard normal cumulative distribution function
168
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
169
+
170
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
171
+ warnings.warn(
172
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
173
+ "The distribution of values may be incorrect.",
174
+ stacklevel=2,
175
+ )
176
+
177
+ # Values are generated by using a truncated uniform distribution and
178
+ # then using the inverse CDF for the normal distribution.
179
+ # Get upper and lower cdf values
180
+ l = norm_cdf((a - mean) / std)
181
+ u = norm_cdf((b - mean) / std)
182
+
183
+ # Uniformly fill tensor with values from [l, u], then translate to
184
+ # [2l-1, 2u-1].
185
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
186
+
187
+ # Use inverse cdf transform for normal distribution to get truncated
188
+ # standard normal
189
+ if tensor.dtype in [torch.float16, torch.bfloat16]:
190
+ # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
191
+ og_dtype = tensor.dtype
192
+ tensor = tensor.to(torch.float32)
193
+ tensor.erfinv_()
194
+ tensor = tensor.to(og_dtype)
195
+ else:
196
+ tensor.erfinv_()
197
+
198
+ # Transform to proper mean, std
199
+ tensor.mul_(std * math.sqrt(2.0))
200
+ tensor.add_(mean)
201
+
202
+ # Clamp to ensure it's in the proper range
203
+ if tensor.dtype == torch.float16:
204
+ # The `clamp_` op is not (yet?) defined in float16+cpu
205
+ tensor = tensor.to(torch.float32)
206
+ tensor.clamp_(min=a, max=b)
207
+ tensor = tensor.to(torch.float16)
208
+ else:
209
+ tensor.clamp_(min=a, max=b)
210
+
211
+
212
+ def trunc_normal_tf_(
213
+ tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
214
+ ) -> torch.Tensor:
215
+ """Fills the input Tensor with values drawn from a truncated
216
+ normal distribution. The values are effectively drawn from the
217
+ normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
218
+ with values outside :math:`[a, b]` redrawn until they are within
219
+ the bounds. The method used for generating the random values works
220
+ best when :math:`a \\leq \text{mean} \\leq b`.
221
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
222
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
223
+ and the result is subsquently scaled and shifted by the mean and std args.
224
+ Args:
225
+ tensor: an n-dimensional `torch.Tensor`
226
+ mean: the mean of the normal distribution
227
+ std: the standard deviation of the normal distribution
228
+ a: the minimum cutoff value
229
+ b: the maximum cutoff value
230
+ """
231
+ with torch.no_grad():
232
+ _trunc_normal_(tensor, 0, 1.0, a, b)
233
+ tensor.mul_(std).add_(mean)
234
+
235
+
236
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
237
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
238
+ if mode == "fan_in":
239
+ denom = fan_in
240
+ elif mode == "fan_out":
241
+ denom = fan_out
242
+ elif mode == "fan_avg":
243
+ denom = (fan_in + fan_out) / 2
244
+
245
+ variance = scale / denom
246
+
247
+ if distribution == "truncated_normal":
248
+ # constant is stddev of standard normal truncated to (-2, 2)
249
+ trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
250
+ elif distribution == "normal":
251
+ with torch.no_grad():
252
+ tensor.normal_(std=math.sqrt(variance))
253
+ elif distribution == "uniform":
254
+ bound = math.sqrt(3 * variance)
255
+ with torch.no_grad():
256
+ tensor.uniform_(-bound, bound)
257
+ else:
258
+ raise ValueError(f"invalid distribution {distribution}")
259
+
260
+
261
+ def lecun_normal_(tensor):
262
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
263
+
264
+
265
+ def default_flax_embed_init(tensor):
266
+ variance_scaling_(tensor, mode="fan_in", distribution="normal")
267
+
268
+
269
+ @dataclass
270
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
271
+ class SiglipVisionModelOutput(ModelOutput):
272
+ """
273
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
274
+ Args:
275
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
276
+ The image embeddings obtained by applying the projection layer to the pooler_output.
277
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
278
+ Sequence of hidden-states at the output of the last layer of the model.
279
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
280
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
281
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
282
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
283
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
284
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
285
+ sequence_length)`.
286
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
287
+ heads.
288
+ """
289
+
290
+ image_embeds: Optional[torch.FloatTensor] = None
291
+ last_hidden_state: torch.FloatTensor = None
292
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
293
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
294
+
295
+
296
+ class SiglipVisionEmbeddings(nn.Module):
297
+ def __init__(self, config: SiglipVisionConfig):
298
+ super().__init__()
299
+ self.config = config
300
+ self.embed_dim = config.hidden_size
301
+ self.image_size = config.image_size
302
+ self.patch_size = config.patch_size
303
+
304
+ self.patch_embedding = nn.Conv2d(
305
+ in_channels=config.num_channels,
306
+ out_channels=self.embed_dim,
307
+ kernel_size=self.patch_size,
308
+ stride=self.patch_size,
309
+ padding="valid",
310
+ )
311
+
312
+ self.num_patches_per_side = self.image_size // self.patch_size
313
+ self.num_patches = self.num_patches_per_side**2
314
+ self.num_positions = self.num_patches
315
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
316
+
317
+ def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor, tgt_sizes: Optional[torch.IntTensor]=None) -> torch.Tensor:
318
+ batch_size = pixel_values.size(0)
319
+
320
+ patch_embeds = self.patch_embedding(pixel_values)
321
+ embeddings = patch_embeds.flatten(2).transpose(1, 2)
322
+
323
+ max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
324
+ max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
325
+ boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
326
+ position_ids = torch.full(
327
+ size=(
328
+ batch_size,
329
+ max_nb_patches_h * max_nb_patches_w,
330
+ ),
331
+ fill_value=0,
332
+ )
333
+
334
+ for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
335
+ if tgt_sizes is not None:
336
+ nb_patches_h = tgt_sizes[batch_idx][0]
337
+ nb_patches_w = tgt_sizes[batch_idx][1]
338
+ else:
339
+ nb_patches_h = p_attn_mask[:, 0].sum()
340
+ nb_patches_w = p_attn_mask[0].sum()
341
+
342
+ fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
343
+ fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
344
+
345
+ bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
346
+ bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
347
+
348
+ pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
349
+ position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
350
+
351
+ position_ids = position_ids.to(self.position_embedding.weight.device)
352
+
353
+ embeddings = embeddings + self.position_embedding(position_ids)
354
+ return embeddings
355
+
356
+
357
+ class SiglipAttention(nn.Module):
358
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
359
+
360
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
361
+ def __init__(self, config):
362
+ super().__init__()
363
+ self.config = config
364
+ self.embed_dim = config.hidden_size
365
+ self.num_heads = config.num_attention_heads
366
+ self.head_dim = self.embed_dim // self.num_heads
367
+ if self.head_dim * self.num_heads != self.embed_dim:
368
+ raise ValueError(
369
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
370
+ f" {self.num_heads})."
371
+ )
372
+ self.scale = self.head_dim**-0.5
373
+ self.dropout = config.attention_dropout
374
+
375
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
376
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
377
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
378
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
379
+
380
+ def forward(
381
+ self,
382
+ hidden_states: torch.Tensor,
383
+ attention_mask: Optional[torch.Tensor] = None,
384
+ output_attentions: Optional[bool] = False,
385
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
386
+ """Input shape: Batch x Time x Channel"""
387
+
388
+ batch_size, q_len, _ = hidden_states.size()
389
+
390
+ query_states = self.q_proj(hidden_states)
391
+ key_states = self.k_proj(hidden_states)
392
+ value_states = self.v_proj(hidden_states)
393
+
394
+ query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
395
+ key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
396
+ value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
397
+
398
+ k_v_seq_len = key_states.shape[-2]
399
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
400
+
401
+ if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
402
+ raise ValueError(
403
+ f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
404
+ f" {attn_weights.size()}"
405
+ )
406
+
407
+ if attention_mask is not None:
408
+ if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
409
+ raise ValueError(
410
+ f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
411
+ )
412
+ attn_weights = attn_weights + attention_mask
413
+
414
+ # upcast attention to fp32
415
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
416
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
417
+ attn_output = torch.matmul(attn_weights, value_states)
418
+
419
+ if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
420
+ raise ValueError(
421
+ f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
422
+ f" {attn_output.size()}"
423
+ )
424
+
425
+ attn_output = attn_output.transpose(1, 2).contiguous()
426
+ attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
427
+
428
+ attn_output = self.out_proj(attn_output)
429
+
430
+ return attn_output, attn_weights
431
+
432
+
433
+ class SiglipFlashAttention2(SiglipAttention):
434
+ """
435
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
436
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
437
+ flash attention and deal with padding tokens in case the input contains any of them.
438
+ """
439
+
440
+ def __init__(self, *args, **kwargs):
441
+ super().__init__(*args, **kwargs)
442
+ self.is_causal = False # Hack to make sure we don't use a causal mask
443
+
444
+ def forward(
445
+ self,
446
+ hidden_states: torch.Tensor,
447
+ attention_mask: Optional[torch.LongTensor] = None,
448
+ position_ids: Optional[torch.LongTensor] = None,
449
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
450
+ output_attentions: bool = False,
451
+ use_cache: bool = False,
452
+ **kwargs,
453
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
454
+ output_attentions = False
455
+
456
+ bsz, q_len, _ = hidden_states.size()
457
+
458
+ query_states = self.q_proj(hidden_states)
459
+ key_states = self.k_proj(hidden_states)
460
+ value_states = self.v_proj(hidden_states)
461
+
462
+ # Flash attention requires the input to have the shape
463
+ # batch_size x seq_length x head_dim x hidden_dim
464
+ # therefore we just need to keep the original shape
465
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
466
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
467
+ value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
468
+
469
+ kv_seq_len = key_states.shape[-2]
470
+ if past_key_value is not None:
471
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
472
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
473
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
474
+
475
+ # if past_key_value is not None:
476
+ # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
477
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
478
+
479
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
480
+ # to be able to avoid many of these transpose/reshape/view.
481
+ query_states = query_states.transpose(1, 2)
482
+ key_states = key_states.transpose(1, 2)
483
+ value_states = value_states.transpose(1, 2)
484
+
485
+ dropout_rate = self.dropout if self.training else 0.0
486
+
487
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
488
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
489
+ # cast them back in the correct dtype just to be sure everything works as expected.
490
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
491
+ # in fp32. (LlamaRMSNorm handles it correctly)
492
+
493
+ input_dtype = query_states.dtype
494
+ if input_dtype == torch.float32:
495
+ if torch.is_autocast_enabled():
496
+ target_dtype = torch.get_autocast_gpu_dtype()
497
+ # Handle the case where the model is quantized
498
+ elif hasattr(self.config, "_pre_quantization_dtype"):
499
+ target_dtype = self.config._pre_quantization_dtype
500
+ else:
501
+ target_dtype = self.q_proj.weight.dtype
502
+
503
+ logger.warning_once(
504
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
505
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
506
+ f" {target_dtype}."
507
+ )
508
+
509
+ query_states = query_states.to(target_dtype)
510
+ key_states = key_states.to(target_dtype)
511
+ value_states = value_states.to(target_dtype)
512
+
513
+ attn_output = self._flash_attention_forward(
514
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
515
+ )
516
+
517
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
518
+ attn_output = self.out_proj(attn_output)
519
+
520
+ if not output_attentions:
521
+ attn_weights = None
522
+
523
+ return attn_output, attn_weights
524
+
525
+ def _flash_attention_forward(
526
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
527
+ ):
528
+ """
529
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
530
+ first unpad the input, then computes the attention scores and pad the final attention scores.
531
+ Args:
532
+ query_states (`torch.Tensor`):
533
+ Input query states to be passed to Flash Attention API
534
+ key_states (`torch.Tensor`):
535
+ Input key states to be passed to Flash Attention API
536
+ value_states (`torch.Tensor`):
537
+ Input value states to be passed to Flash Attention API
538
+ attention_mask (`torch.Tensor`):
539
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
540
+ position of padding tokens and 1 for the position of non-padding tokens.
541
+ dropout (`int`, *optional*):
542
+ Attention dropout
543
+ softmax_scale (`float`, *optional*):
544
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
545
+ """
546
+
547
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
548
+ causal = self.is_causal and query_length != 1
549
+
550
+ # Contains at least one padding token in the sequence
551
+ if attention_mask is not None:
552
+ batch_size = query_states.shape[0]
553
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
554
+ query_states, key_states, value_states, attention_mask, query_length
555
+ )
556
+
557
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
558
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
559
+
560
+ attn_output_unpad = flash_attn_varlen_func(
561
+ query_states,
562
+ key_states,
563
+ value_states,
564
+ cu_seqlens_q=cu_seqlens_q,
565
+ cu_seqlens_k=cu_seqlens_k,
566
+ max_seqlen_q=max_seqlen_in_batch_q,
567
+ max_seqlen_k=max_seqlen_in_batch_k,
568
+ dropout_p=dropout,
569
+ softmax_scale=softmax_scale,
570
+ causal=causal,
571
+ )
572
+
573
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
574
+ else:
575
+ attn_output = flash_attn_func(
576
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
577
+ )
578
+
579
+ return attn_output
580
+
581
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
582
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
583
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
584
+
585
+ key_layer = index_first_axis(
586
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
587
+ )
588
+ value_layer = index_first_axis(
589
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
590
+ )
591
+ if query_length == kv_seq_len:
592
+ query_layer = index_first_axis(
593
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
594
+ )
595
+ cu_seqlens_q = cu_seqlens_k
596
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
597
+ indices_q = indices_k
598
+ elif query_length == 1:
599
+ max_seqlen_in_batch_q = 1
600
+ cu_seqlens_q = torch.arange(
601
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
602
+ ) # There is a memcpy here, that is very bad.
603
+ indices_q = cu_seqlens_q[:-1]
604
+ query_layer = query_layer.squeeze(1)
605
+ else:
606
+ # The -q_len: slice assumes left padding.
607
+ attention_mask = attention_mask[:, -query_length:]
608
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
609
+
610
+ return (
611
+ query_layer,
612
+ key_layer,
613
+ value_layer,
614
+ indices_q,
615
+ (cu_seqlens_q, cu_seqlens_k),
616
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
617
+ )
618
+
619
+
620
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
621
+ class SiglipMLP(nn.Module):
622
+ def __init__(self, config):
623
+ super().__init__()
624
+ self.config = config
625
+ self.activation_fn = ACT2FN[config.hidden_act]
626
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
627
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
628
+
629
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
630
+ hidden_states = self.fc1(hidden_states)
631
+ hidden_states = self.activation_fn(hidden_states)
632
+ hidden_states = self.fc2(hidden_states)
633
+ return hidden_states
634
+
635
+
636
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
637
+ class SiglipEncoderLayer(nn.Module):
638
+ def __init__(self, config: SiglipVisionConfig):
639
+ super().__init__()
640
+ self.embed_dim = config.hidden_size
641
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
642
+ self.self_attn = (
643
+ SiglipAttention(config)
644
+ if not self._use_flash_attention_2
645
+ else SiglipFlashAttention2(config)
646
+ )
647
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
648
+ self.mlp = SiglipMLP(config)
649
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
650
+
651
+ def forward(
652
+ self,
653
+ hidden_states: torch.Tensor,
654
+ attention_mask: torch.Tensor,
655
+ output_attentions: Optional[bool] = False,
656
+ ) -> Tuple[torch.FloatTensor]:
657
+ """
658
+ Args:
659
+ hidden_states (`torch.FloatTensor`):
660
+ Input to the layer of shape `(batch, seq_len, embed_dim)`.
661
+ attention_mask (`torch.FloatTensor`):
662
+ Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
663
+ output_attentions (`bool`, *optional*, defaults to `False`):
664
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
665
+ returned tensors for more detail.
666
+ """
667
+ residual = hidden_states
668
+
669
+ hidden_states = self.layer_norm1(hidden_states)
670
+ hidden_states, attn_weights = self.self_attn(
671
+ hidden_states=hidden_states,
672
+ attention_mask=attention_mask,
673
+ output_attentions=output_attentions,
674
+ )
675
+ hidden_states = residual + hidden_states
676
+
677
+ residual = hidden_states
678
+ hidden_states = self.layer_norm2(hidden_states)
679
+ hidden_states = self.mlp(hidden_states)
680
+ hidden_states = residual + hidden_states
681
+
682
+ outputs = (hidden_states,)
683
+
684
+ if output_attentions:
685
+ outputs += (attn_weights,)
686
+
687
+ return outputs
688
+
689
+
690
+ class SiglipPreTrainedModel(PreTrainedModel):
691
+ """
692
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
693
+ models.
694
+ """
695
+
696
+ config_class = SiglipVisionConfig
697
+ base_model_prefix = "siglip"
698
+ supports_gradient_checkpointing = True
699
+
700
+ def _init_weights(self, module):
701
+ """Initialize the weights"""
702
+
703
+ if isinstance(module, SiglipVisionEmbeddings):
704
+ width = self.config.hidden_size
705
+ nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
706
+ elif isinstance(module, nn.Embedding):
707
+ default_flax_embed_init(module.weight)
708
+ elif isinstance(module, SiglipAttention):
709
+ nn.init.normal_(module.q_proj.weight)
710
+ nn.init.normal_(module.k_proj.weight)
711
+ nn.init.normal_(module.v_proj.weight)
712
+ nn.init.normal_(module.out_proj.weight)
713
+ nn.init.zeros_(module.q_proj.bias)
714
+ nn.init.zeros_(module.k_proj.bias)
715
+ nn.init.zeros_(module.v_proj.bias)
716
+ nn.init.zeros_(module.out_proj.bias)
717
+ elif isinstance(module, SiglipMLP):
718
+ nn.init.normal_(module.fc1.weight)
719
+ nn.init.normal_(module.fc2.weight)
720
+ nn.init.normal_(module.fc1.bias, std=1e-6)
721
+ nn.init.normal_(module.fc2.bias, std=1e-6)
722
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
723
+ lecun_normal_(module.weight)
724
+ if module.bias is not None:
725
+ nn.init.zeros_(module.bias)
726
+ elif isinstance(module, nn.LayerNorm):
727
+ module.bias.data.zero_()
728
+ module.weight.data.fill_(1.0)
729
+
730
+
731
+ SIGLIP_START_DOCSTRING = r"""
732
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
733
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
734
+ etc.)
735
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
736
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
737
+ and behavior.
738
+ Parameters:
739
+ config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
740
+ Initializing with a config file does not load the weights associated with the model, only the
741
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
742
+ """
743
+
744
+
745
+ SIGLIP_VISION_INPUTS_DOCSTRING = r"""
746
+ Args:
747
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
748
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
749
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
750
+ output_attentions (`bool`, *optional*):
751
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
752
+ tensors for more detail.
753
+ output_hidden_states (`bool`, *optional*):
754
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
755
+ more detail.
756
+ return_dict (`bool`, *optional*):
757
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
758
+ """
759
+
760
+
761
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
762
+ class SiglipEncoder(nn.Module):
763
+ """
764
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
765
+ [`SiglipEncoderLayer`].
766
+ Args:
767
+ config: SiglipConfig
768
+ """
769
+
770
+ def __init__(self, config: SiglipVisionConfig):
771
+ super().__init__()
772
+ self.config = config
773
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
774
+ self.gradient_checkpointing = False
775
+
776
+ # Ignore copy
777
+ def forward(
778
+ self,
779
+ inputs_embeds,
780
+ attention_mask: Optional[torch.Tensor] = None,
781
+ output_attentions: Optional[bool] = None,
782
+ output_hidden_states: Optional[bool] = None,
783
+ return_dict: Optional[bool] = None,
784
+ ) -> Union[Tuple, BaseModelOutput]:
785
+ r"""
786
+ Args:
787
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
788
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
789
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
790
+ than the model's internal embedding lookup matrix.
791
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
792
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
793
+ - 1 for tokens that are **not masked**,
794
+ - 0 for tokens that are **masked**.
795
+ [What are attention masks?](../glossary#attention-mask)
796
+ output_attentions (`bool`, *optional*):
797
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
798
+ returned tensors for more detail.
799
+ output_hidden_states (`bool`, *optional*):
800
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
801
+ for more detail.
802
+ return_dict (`bool`, *optional*):
803
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
804
+ """
805
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
806
+ output_hidden_states = (
807
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
808
+ )
809
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
810
+
811
+ encoder_states = () if output_hidden_states else None
812
+ all_attentions = () if output_attentions else None
813
+
814
+ hidden_states = inputs_embeds
815
+ for encoder_layer in self.layers:
816
+ if output_hidden_states:
817
+ encoder_states = encoder_states + (hidden_states,)
818
+ if self.gradient_checkpointing and self.training:
819
+ layer_outputs = self._gradient_checkpointing_func(
820
+ encoder_layer.__call__,
821
+ hidden_states,
822
+ attention_mask,
823
+ output_attentions,
824
+ )
825
+ else:
826
+ layer_outputs = encoder_layer(
827
+ hidden_states,
828
+ attention_mask,
829
+ output_attentions=output_attentions,
830
+ )
831
+
832
+ hidden_states = layer_outputs[0]
833
+
834
+ if output_attentions:
835
+ all_attentions = all_attentions + (layer_outputs[1],)
836
+
837
+ if output_hidden_states:
838
+ encoder_states = encoder_states + (hidden_states,)
839
+
840
+ if not return_dict:
841
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
842
+ return BaseModelOutput(
843
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
844
+ )
845
+
846
+ @add_start_docstrings(
847
+ """The vision model from SigLIP without any head or projection on top.""",
848
+ SIGLIP_START_DOCSTRING
849
+ )
850
+ class SiglipVisionTransformer(SiglipPreTrainedModel):
851
+ config_class = SiglipVisionConfig
852
+ main_input_name = "pixel_values"
853
+ _supports_flash_attn_2 = True
854
+
855
+ def __init__(self, config: SiglipVisionConfig):
856
+ super().__init__(config)
857
+ self.config = config
858
+ embed_dim = config.hidden_size
859
+
860
+ self.embeddings = SiglipVisionEmbeddings(config)
861
+ self.encoder = SiglipEncoder(config)
862
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
863
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
864
+
865
+ # Initialize weights and apply final processing
866
+ self.post_init()
867
+
868
+ def get_input_embeddings(self) -> nn.Module:
869
+ return self.embeddings.patch_embedding
870
+
871
+ @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
872
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
873
+ def forward(
874
+ self,
875
+ pixel_values,
876
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
877
+ tgt_sizes: Optional[torch.IntTensor] = None,
878
+ output_attentions: Optional[bool] = None,
879
+ output_hidden_states: Optional[bool] = None,
880
+ return_dict: Optional[bool] = None,
881
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
882
+ r"""
883
+ Returns:
884
+ """
885
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
886
+ output_hidden_states = (
887
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
888
+ )
889
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
890
+
891
+ batch_size = pixel_values.size(0)
892
+ if patch_attention_mask is None:
893
+ patch_attention_mask = torch.ones(
894
+ size=(
895
+ batch_size,
896
+ pixel_values.size(2) // self.config.patch_size,
897
+ pixel_values.size(3) // self.config.patch_size,
898
+ ),
899
+ dtype=torch.bool,
900
+ device=pixel_values.device,
901
+ )
902
+
903
+ hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, tgt_sizes=tgt_sizes)
904
+
905
+ patch_attention_mask = patch_attention_mask.view(batch_size, -1)
906
+ # The call to `_upad_input` in `_flash_attention_forward` is expensive
907
+ # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
908
+ # avoiding passing the attention_mask, which is equivalent to attending to the full sequence
909
+ if not torch.any(~patch_attention_mask):
910
+ attention_mask=None
911
+ else:
912
+ attention_mask = (
913
+ _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
914
+ if not self._use_flash_attention_2
915
+ else patch_attention_mask
916
+ )
917
+
918
+ encoder_outputs = self.encoder(
919
+ inputs_embeds=hidden_states,
920
+ attention_mask=attention_mask,
921
+ output_attentions=output_attentions,
922
+ output_hidden_states=output_hidden_states,
923
+ return_dict=return_dict,
924
+ )
925
+
926
+ last_hidden_state = encoder_outputs[0]
927
+ last_hidden_state = self.post_layernorm(last_hidden_state)
928
+
929
+ if not return_dict:
930
+ return (last_hidden_state, None) + encoder_outputs[1:]
931
+
932
+ return BaseModelOutputWithPooling(
933
+ last_hidden_state=last_hidden_state,
934
+ pooler_output=None,
935
+ hidden_states=encoder_outputs.hidden_states,
936
+ attentions=encoder_outputs.attentions,
937
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_processor_type": "MiniCPMVImageProcessor",
3
+ "auto_map": {
4
+ "AutoProcessor": "processing_minicpmv.MiniCPMVProcessor",
5
+ "AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
6
+ },
7
+ "processor_class": "MiniCPMVProcessor",
8
+ "max_slice_nums": 9,
9
+ "scale_resolution": 448,
10
+ "patch_size": 14,
11
+ "use_image_id": true,
12
+ "image_feature_size": 64,
13
+ "im_start": "<image>",
14
+ "im_end": "</image>",
15
+ "slice_start": "<slice>",
16
+ "slice_end": "</slice>",
17
+ "unk": "<unk>",
18
+ "im_id_start": "<image_id>",
19
+ "im_id_end": "</image_id>",
20
+ "slice_mode": true,
21
+ "norm_mean": [0.5, 0.5, 0.5],
22
+ "norm_std": [0.5, 0.5, 0.5],
23
+ "version": 2.6
24
+ }
processing_minicpmv.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for MiniCPMV.
17
+ """
18
+
19
+ from typing import List, Optional, Union, Dict, Any
20
+ import torch
21
+ import re
22
+
23
+ from transformers.image_processing_utils import BatchFeature
24
+ from transformers.image_utils import ImageInput
25
+ from transformers.processing_utils import ProcessorMixin
26
+ from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
27
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
28
+
29
+ from .image_processing_minicpmv import MiniCPMVBatchFeature
30
+
31
+
32
+ class MiniCPMVProcessor(ProcessorMixin):
33
+ r"""
34
+ Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
35
+
36
+ [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
37
+ [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
38
+
39
+ Args:
40
+ image_processor ([`MiniCPMVImageProcessor`], *optional*):
41
+ The image processor is a required input.
42
+ tokenizer ([`LlamaTokenizerWrapper`], *optional*):
43
+ The tokenizer is a required input.
44
+ """
45
+ attributes = ["image_processor", "tokenizer"]
46
+ image_processor_class = "AutoImageProcessor"
47
+ tokenizer_class = "AutoTokenizer"
48
+
49
+ def __init__(self, image_processor=None, tokenizer=None):
50
+ super().__init__(image_processor, tokenizer)
51
+ self.version = image_processor.version
52
+
53
+ def __call__(
54
+ self,
55
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
56
+ images: ImageInput = None,
57
+ max_length: Optional[int] = None,
58
+ do_pad: Optional[bool] = True,
59
+ max_slice_nums: int = None,
60
+ use_image_id: bool = None,
61
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
62
+ **kwargs
63
+ ) -> MiniCPMVBatchFeature:
64
+
65
+ if images is not None:
66
+ image_inputs = self.image_processor(images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors)
67
+ return self._convert_images_texts_to_inputs(image_inputs, text, max_slice_nums=max_slice_nums, use_image_id=use_image_id, max_length=max_length, **kwargs)
68
+
69
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
70
+ def batch_decode(self, *args, **kwargs):
71
+ """
72
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
73
+ refer to the docstring of this method for more information.
74
+ """
75
+ output_ids = args[0]
76
+ result_text = []
77
+ for result in output_ids:
78
+ result = result[result != 0]
79
+ if result[0] == self.tokenizer.bos_id:
80
+ result = result[1:]
81
+ if result[-1] == self.tokenizer.eos_id:
82
+ result = result[:-1]
83
+ result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
84
+ return result_text
85
+ # return self.tokenizer.batch_decode(*args, **kwargs)
86
+
87
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
88
+ def decode(self, *args, **kwargs):
89
+ """
90
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
91
+ the docstring of this method for more information.
92
+ """
93
+ result = args[0]
94
+ result = result[result != 0]
95
+ if result[0] == self.tokenizer.bos_id:
96
+ result = result[1:]
97
+ if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
98
+ result = result[:-1]
99
+ return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
100
+
101
+ def _convert(
102
+ self, input_str, max_inp_length: Optional[int] = None
103
+ ):
104
+ if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False):
105
+ input_ids = self.tokenizer.encode(input_str)
106
+ else:
107
+ input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
108
+ if max_inp_length is not None:
109
+ input_ids = input_ids[:max_inp_length]
110
+ input_ids = torch.tensor(input_ids, dtype=torch.int32)
111
+
112
+ start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
113
+ end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
114
+
115
+ image_start_tokens = torch.where(start_cond)[0]
116
+ image_start_tokens += 1
117
+ image_end_tokens = torch.where(end_cond)[0]
118
+
119
+ valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
120
+
121
+ image_bounds = torch.hstack(
122
+ [
123
+ image_start_tokens[:valid_image_nums].unsqueeze(-1),
124
+ image_end_tokens[:valid_image_nums].unsqueeze(-1),
125
+ ]
126
+ )
127
+ return input_ids, image_bounds
128
+
129
+ def _convert_images_texts_to_inputs(
130
+ self,
131
+ images,
132
+ texts: Union[str, List[str]],
133
+ truncation=None,
134
+ max_length=None,
135
+ max_slice_nums=None,
136
+ use_image_id=None,
137
+ return_tensors=None,
138
+ **kwargs
139
+ ):
140
+ if images is None or not len(images):
141
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs)
142
+ return MiniCPMVBatchFeature(data={**model_inputs})
143
+
144
+ pattern = "(<image>./</image>)"
145
+ images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
146
+
147
+ if isinstance(texts, str):
148
+ texts = [texts]
149
+ input_ids_list = []
150
+ image_bounds_list = []
151
+ for index, text in enumerate(texts):
152
+ image_tags = re.findall(pattern, text)
153
+ assert len(image_tags) == len(image_sizes[index])
154
+ text_chunks = text.split(pattern)
155
+ final_text = ""
156
+ for i in range(len(image_tags)):
157
+ final_text = final_text + text_chunks[i] + \
158
+ self.image_processor.get_slice_image_placeholder(
159
+ image_sizes[index][i],
160
+ i,
161
+ max_slice_nums,
162
+ use_image_id
163
+ )
164
+ final_text += text_chunks[-1]
165
+ input_ids, image_bounds = self._convert(final_text, max_length)
166
+ input_ids_list.append(input_ids)
167
+ image_bounds_list.append(image_bounds)
168
+ padded_input_ids, padding_lengths = self.pad(
169
+ input_ids_list,
170
+ padding_side="left"
171
+ )
172
+ for i, length in enumerate(padding_lengths):
173
+ image_bounds_list[i] = image_bounds_list[i] + length
174
+ attention_mask = padded_input_ids.ne(0)
175
+
176
+ return MiniCPMVBatchFeature(data={
177
+ "input_ids": padded_input_ids,
178
+ "attention_mask": attention_mask,
179
+ "pixel_values": images,
180
+ "image_sizes": image_sizes,
181
+ "image_bound": image_bounds_list,
182
+ "tgt_sizes": tgt_sizes
183
+ })
184
+
185
+ @property
186
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
187
+ def model_input_names(self):
188
+ tokenizer_input_names = self.tokenizer.model_input_names
189
+ image_processor_input_names = self.image_processor.model_input_names
190
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
191
+
192
+
193
+ def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
194
+ items = []
195
+ if isinstance(inputs[0], list):
196
+ assert isinstance(inputs[0][0], torch.Tensor)
197
+ for it in inputs:
198
+ for tr in it:
199
+ items.append(tr)
200
+ else:
201
+ assert isinstance(inputs[0], torch.Tensor)
202
+ items = inputs
203
+
204
+ batch_size = len(items)
205
+ shape = items[0].shape
206
+ dim = len(shape)
207
+ assert dim <= 2
208
+ if max_length is None:
209
+ max_length = 0
210
+ max_length = max(max_length, max(item.shape[-1] for item in items))
211
+ min_length = min(item.shape[-1] for item in items)
212
+ dtype = items[0].dtype
213
+
214
+ if dim == 0:
215
+ return torch.stack([item for item in items], dim=0), [0]
216
+ elif dim == 1:
217
+ if max_length == min_length:
218
+ return torch.stack([item for item in items], dim=0), [0] * batch_size
219
+ tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
220
+ else:
221
+ tensor = (
222
+ torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
223
+ + padding_value
224
+ )
225
+
226
+ padding_length = []
227
+ for i, item in enumerate(items):
228
+ if dim == 1:
229
+ if padding_side == "left":
230
+ tensor[i, -len(item) :] = item.clone()
231
+ else:
232
+ tensor[i, : len(item)] = item.clone()
233
+ elif dim == 2:
234
+ if padding_side == "left":
235
+ tensor[i, -len(item) :, :] = item.clone()
236
+ else:
237
+ tensor[i, : len(item), :] = item.clone()
238
+ padding_length.append(tensor.shape[-1] - len(item))
239
+
240
+ return tensor, padding_length
resampler.py ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ from typing import Optional, Tuple
3
+ import numpy as np
4
+ import warnings
5
+
6
+ import torch
7
+ from torch import nn
8
+ from torch import Tensor
9
+ import torch.nn.functional as F
10
+ from torch.nn.functional import *
11
+ from torch.nn.modules.activation import *
12
+ from torch.nn.init import trunc_normal_, constant_, xavier_normal_, xavier_uniform_
13
+
14
+ from transformers.integrations import is_deepspeed_zero3_enabled
15
+
16
+ def get_2d_sincos_pos_embed(embed_dim, image_size):
17
+ """
18
+ image_size: image_size or (image_height, image_width)
19
+ return:
20
+ pos_embed: [image_height, image_width, embed_dim]
21
+ """
22
+ if isinstance(image_size, int):
23
+ grid_h_size, grid_w_size = image_size, image_size
24
+ else:
25
+ grid_h_size, grid_w_size = image_size[0], image_size[1]
26
+
27
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
28
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
29
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
30
+ grid = np.stack(grid, axis=0)
31
+
32
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
33
+ return pos_embed
34
+
35
+
36
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
37
+ assert embed_dim % 2 == 0
38
+
39
+ # use half of dimensions to encode grid_h
40
+ emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
41
+ emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
42
+
43
+ emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
44
+ return emb
45
+
46
+
47
+ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
48
+ """
49
+ embed_dim: output dimension for each position
50
+ pos: a list of positions to be encoded: size (H, W)
51
+ out: (H, W, D)
52
+ """
53
+ assert embed_dim % 2 == 0
54
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
55
+ omega /= embed_dim / 2.
56
+ omega = 1. / 10000 ** omega # (D/2,)
57
+
58
+ out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
59
+
60
+ emb_sin = np.sin(out) # (H, W, D/2)
61
+ emb_cos = np.cos(out) # (H, W, D/2)
62
+
63
+ emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
64
+ return emb
65
+
66
+
67
+ class Resampler(nn.Module):
68
+ """
69
+ A 2D perceiver-resampler network with one cross attention layers by
70
+ given learnable queries and 2d sincos pos_emb
71
+ Outputs:
72
+ A tensor with the shape of (batch_size, num_queries, embed_dim)
73
+ """
74
+
75
+ def __init__(
76
+ self,
77
+ num_queries,
78
+ embed_dim,
79
+ num_heads,
80
+ kv_dim=None,
81
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
82
+ adaptive=False,
83
+ max_size=(70, 70),
84
+ ):
85
+ super().__init__()
86
+ self.num_queries = num_queries
87
+ self.embed_dim = embed_dim
88
+ self.num_heads = num_heads
89
+ self.adaptive = adaptive
90
+ self.max_size = max_size
91
+
92
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
93
+
94
+ if kv_dim is not None and kv_dim != embed_dim:
95
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
96
+ else:
97
+ self.kv_proj = nn.Identity()
98
+
99
+ self.attn = MultiheadAttention(embed_dim, num_heads)
100
+ self.ln_q = norm_layer(embed_dim)
101
+ self.ln_kv = norm_layer(embed_dim)
102
+
103
+ self.ln_post = norm_layer(embed_dim)
104
+ self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
105
+
106
+ self._set_2d_pos_cache(self.max_size)
107
+
108
+ def _set_2d_pos_cache(self, max_size, device='cpu'):
109
+ if is_deepspeed_zero3_enabled():
110
+ device='cuda'
111
+ pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
112
+ self.register_buffer("pos_embed", pos_embed, persistent=False)
113
+
114
+ def _adjust_pos_cache(self, tgt_sizes, device):
115
+ max_h = torch.max(tgt_sizes[:, 0])
116
+ max_w = torch.max(tgt_sizes[:, 1])
117
+ if max_h > self.max_size[0] or max_w > self.max_size[1]:
118
+ self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
119
+ self._set_2d_pos_cache(self.max_size, device)
120
+
121
+ def _init_weights(self, m):
122
+ if isinstance(m, nn.Linear):
123
+ trunc_normal_(m.weight, std=.02)
124
+ if isinstance(m, nn.Linear) and m.bias is not None:
125
+ nn.init.constant_(m.bias, 0)
126
+ elif isinstance(m, nn.LayerNorm):
127
+ nn.init.constant_(m.bias, 0)
128
+ nn.init.constant_(m.weight, 1.0)
129
+
130
+ def forward(self, x, tgt_sizes=None):
131
+ assert x.shape[0] == tgt_sizes.shape[0]
132
+ bs = x.shape[0]
133
+
134
+ device = x.device
135
+ dtype = x.dtype
136
+
137
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
138
+
139
+ self._adjust_pos_cache(tgt_sizes, device=device)
140
+
141
+ max_patch_len = torch.max(patch_len)
142
+ key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
143
+
144
+ pos_embed = []
145
+ for i in range(bs):
146
+ tgt_h, tgt_w = tgt_sizes[i]
147
+ pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
148
+ key_padding_mask[i, patch_len[i]:] = True
149
+
150
+ pos_embed = torch.nn.utils.rnn.pad_sequence(
151
+ pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
152
+
153
+ x = self.kv_proj(x) # B * L * D
154
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
155
+
156
+ q = self.ln_q(self.query) # Q * D
157
+
158
+ out = self.attn(
159
+ self._repeat(q, bs), # Q * B * D
160
+ x + pos_embed, # L * B * D + L * B * D
161
+ x,
162
+ key_padding_mask=key_padding_mask)[0]
163
+ # out: Q * B * D
164
+ x = out.permute(1, 0, 2) # B * Q * D
165
+
166
+ x = self.ln_post(x)
167
+ x = x @ self.proj
168
+ return x
169
+
170
+ def _repeat(self, query, N: int):
171
+ return query.unsqueeze(1).repeat(1, N, 1)
172
+
173
+
174
+ class MultiheadAttention(nn.MultiheadAttention):
175
+ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
176
+ add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
177
+ super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
178
+
179
+ # rewrite out_proj layer,with nn.Linear
180
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
181
+
182
+ def forward(
183
+ self,
184
+ query: Tensor,
185
+ key: Tensor,
186
+ value: Tensor,
187
+ key_padding_mask: Optional[Tensor] = None,
188
+ need_weights: bool = True,
189
+ attn_mask: Optional[Tensor] = None,
190
+ average_attn_weights: bool = True,
191
+ is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
192
+ why_not_fast_path = ''
193
+ if ((attn_mask is not None and torch.is_floating_point(attn_mask))
194
+ or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
195
+ why_not_fast_path = "floating-point masks are not supported for fast path."
196
+
197
+ is_batched = query.dim() == 3
198
+
199
+ key_padding_mask = _canonical_mask(
200
+ mask=key_padding_mask,
201
+ mask_name="key_padding_mask",
202
+ other_type=F._none_or_dtype(attn_mask),
203
+ other_name="attn_mask",
204
+ target_type=query.dtype
205
+ )
206
+
207
+ attn_mask = _canonical_mask(
208
+ mask=attn_mask,
209
+ mask_name="attn_mask",
210
+ other_type=None,
211
+ other_name="",
212
+ target_type=query.dtype,
213
+ check_other=False,
214
+ )
215
+
216
+
217
+ if not is_batched:
218
+ why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
219
+ elif query is not key or key is not value:
220
+ # When lifting this restriction, don't forget to either
221
+ # enforce that the dtypes all match or test cases where
222
+ # they don't!
223
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
224
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
225
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
226
+ elif self.in_proj_weight is None:
227
+ why_not_fast_path = "in_proj_weight was None"
228
+ elif query.dtype != self.in_proj_weight.dtype:
229
+ # this case will fail anyway, but at least they'll get a useful error message.
230
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
231
+ elif self.training:
232
+ why_not_fast_path = "training is enabled"
233
+ elif (self.num_heads % 2) != 0:
234
+ why_not_fast_path = "self.num_heads is not even"
235
+ elif not self.batch_first:
236
+ why_not_fast_path = "batch_first was not True"
237
+ elif self.bias_k is not None:
238
+ why_not_fast_path = "self.bias_k was not None"
239
+ elif self.bias_v is not None:
240
+ why_not_fast_path = "self.bias_v was not None"
241
+ elif self.add_zero_attn:
242
+ why_not_fast_path = "add_zero_attn was enabled"
243
+ elif not self._qkv_same_embed_dim:
244
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
245
+ elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
246
+ why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
247
+ is not supported with NestedTensor input"
248
+ elif torch.is_autocast_enabled():
249
+ why_not_fast_path = "autocast is enabled"
250
+
251
+ if not why_not_fast_path:
252
+ tensor_args = (
253
+ query,
254
+ key,
255
+ value,
256
+ self.in_proj_weight,
257
+ self.in_proj_bias,
258
+ self.out_proj.weight,
259
+ self.out_proj.bias,
260
+ )
261
+ # We have to use list comprehensions below because TorchScript does not support
262
+ # generator expressions.
263
+ if torch.overrides.has_torch_function(tensor_args):
264
+ why_not_fast_path = "some Tensor argument has_torch_function"
265
+ elif _is_make_fx_tracing():
266
+ why_not_fast_path = "we are running make_fx tracing"
267
+ elif not all(_check_arg_device(x) for x in tensor_args):
268
+ why_not_fast_path = ("some Tensor argument's device is neither one of "
269
+ f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
270
+ elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
271
+ why_not_fast_path = ("grad is enabled and at least one of query or the "
272
+ "input/output projection weights or biases requires_grad")
273
+ if not why_not_fast_path:
274
+ merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
275
+
276
+ if self.in_proj_bias is not None and self.in_proj_weight is not None:
277
+ return torch._native_multi_head_attention(
278
+ query,
279
+ key,
280
+ value,
281
+ self.embed_dim,
282
+ self.num_heads,
283
+ self.in_proj_weight,
284
+ self.in_proj_bias,
285
+ self.out_proj.weight,
286
+ self.out_proj.bias,
287
+ merged_mask,
288
+ need_weights,
289
+ average_attn_weights,
290
+ mask_type)
291
+
292
+ any_nested = query.is_nested or key.is_nested or value.is_nested
293
+ assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
294
+ f"The fast path was not hit because {why_not_fast_path}")
295
+
296
+ if self.batch_first and is_batched:
297
+ # make sure that the transpose op does not affect the "is" property
298
+ if key is value:
299
+ if query is key:
300
+ query = key = value = query.transpose(1, 0)
301
+ else:
302
+ query, key = (x.transpose(1, 0) for x in (query, key))
303
+ value = key
304
+ else:
305
+ query, key, value = (x.transpose(1, 0) for x in (query, key, value))
306
+
307
+ if not self._qkv_same_embed_dim:
308
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
309
+ query, key, value, self.embed_dim, self.num_heads,
310
+ self.in_proj_weight, self.in_proj_bias,
311
+ self.bias_k, self.bias_v, self.add_zero_attn,
312
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
313
+ training=self.training,
314
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
315
+ attn_mask=attn_mask,
316
+ use_separate_proj_weight=True,
317
+ q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
318
+ v_proj_weight=self.v_proj_weight,
319
+ average_attn_weights=average_attn_weights,
320
+ is_causal=is_causal)
321
+ else:
322
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
323
+ query, key, value, self.embed_dim, self.num_heads,
324
+ self.in_proj_weight, self.in_proj_bias,
325
+ self.bias_k, self.bias_v, self.add_zero_attn,
326
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
327
+ training=self.training,
328
+ key_padding_mask=key_padding_mask,
329
+ need_weights=need_weights,
330
+ attn_mask=attn_mask,
331
+ average_attn_weights=average_attn_weights,
332
+ is_causal=is_causal)
333
+ if self.batch_first and is_batched:
334
+ return attn_output.transpose(1, 0), attn_output_weights
335
+ else:
336
+ return attn_output, attn_output_weights
337
+
338
+ def multi_head_attention_forward(
339
+ self,
340
+ query: Tensor,
341
+ key: Tensor,
342
+ value: Tensor,
343
+ embed_dim_to_check: int,
344
+ num_heads: int,
345
+ in_proj_weight: Optional[Tensor],
346
+ in_proj_bias: Optional[Tensor],
347
+ bias_k: Optional[Tensor],
348
+ bias_v: Optional[Tensor],
349
+ add_zero_attn: bool,
350
+ dropout_p: float,
351
+ out_proj_weight: Tensor,
352
+ out_proj_bias: Optional[Tensor],
353
+ training: bool = True,
354
+ key_padding_mask: Optional[Tensor] = None,
355
+ need_weights: bool = True,
356
+ attn_mask: Optional[Tensor] = None,
357
+ use_separate_proj_weight: bool = False,
358
+ q_proj_weight: Optional[Tensor] = None,
359
+ k_proj_weight: Optional[Tensor] = None,
360
+ v_proj_weight: Optional[Tensor] = None,
361
+ static_k: Optional[Tensor] = None,
362
+ static_v: Optional[Tensor] = None,
363
+ average_attn_weights: bool = True,
364
+ is_causal: bool = False,
365
+ ) -> Tuple[Tensor, Optional[Tensor]]:
366
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
367
+
368
+ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
369
+
370
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
371
+ # is batched, run the computation and before returning squeeze the
372
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
373
+ if not is_batched:
374
+ # unsqueeze if the input is unbatched
375
+ query = query.unsqueeze(1)
376
+ key = key.unsqueeze(1)
377
+ value = value.unsqueeze(1)
378
+ if key_padding_mask is not None:
379
+ key_padding_mask = key_padding_mask.unsqueeze(0)
380
+
381
+ # set up shape vars
382
+ tgt_len, bsz, embed_dim = query.shape
383
+ src_len, _, _ = key.shape
384
+
385
+ key_padding_mask = _canonical_mask(
386
+ mask=key_padding_mask,
387
+ mask_name="key_padding_mask",
388
+ other_type=_none_or_dtype(attn_mask),
389
+ other_name="attn_mask",
390
+ target_type=query.dtype
391
+ )
392
+
393
+ if is_causal and attn_mask is None:
394
+ raise RuntimeError(
395
+ "Need attn_mask if specifying the is_causal hint. "
396
+ "You may use the Transformer module method "
397
+ "`generate_square_subsequent_mask` to create this mask."
398
+ )
399
+
400
+ if is_causal and key_padding_mask is None and not need_weights:
401
+ # when we have a kpm or need weights, we need attn_mask
402
+ # Otherwise, we use the is_causal hint go as is_causal
403
+ # indicator to SDPA.
404
+ attn_mask = None
405
+ else:
406
+ attn_mask = _canonical_mask(
407
+ mask=attn_mask,
408
+ mask_name="attn_mask",
409
+ other_type=None,
410
+ other_name="",
411
+ target_type=query.dtype,
412
+ check_other=False,
413
+ )
414
+
415
+ if key_padding_mask is not None:
416
+ # We have the attn_mask, and use that to merge kpm into it.
417
+ # Turn off use of is_causal hint, as the merged mask is no
418
+ # longer causal.
419
+ is_causal = False
420
+
421
+ assert embed_dim == embed_dim_to_check, \
422
+ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
423
+ if isinstance(embed_dim, torch.Tensor):
424
+ # embed_dim can be a tensor when JIT tracing
425
+ head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
426
+ else:
427
+ head_dim = embed_dim // num_heads
428
+ assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
429
+ if use_separate_proj_weight:
430
+ # allow MHA to have different embedding dimensions when separate projection weights are used
431
+ assert key.shape[:2] == value.shape[:2], \
432
+ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
433
+ else:
434
+ assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
435
+
436
+ #
437
+ # compute in-projection
438
+ #
439
+ if not use_separate_proj_weight:
440
+ assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
441
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
442
+ else:
443
+ assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
444
+ assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
445
+ assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
446
+ if in_proj_bias is None:
447
+ b_q = b_k = b_v = None
448
+ else:
449
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
450
+ q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
451
+
452
+ # prep attention mask
453
+
454
+ if attn_mask is not None:
455
+ # ensure attn_mask's dim is 3
456
+ if attn_mask.dim() == 2:
457
+ correct_2d_size = (tgt_len, src_len)
458
+ if attn_mask.shape != correct_2d_size:
459
+ raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
460
+ attn_mask = attn_mask.unsqueeze(0)
461
+ elif attn_mask.dim() == 3:
462
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
463
+ if attn_mask.shape != correct_3d_size:
464
+ raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
465
+ else:
466
+ raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
467
+
468
+ # add bias along batch dimension (currently second)
469
+ if bias_k is not None and bias_v is not None:
470
+ assert static_k is None, "bias cannot be added to static key."
471
+ assert static_v is None, "bias cannot be added to static value."
472
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
473
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
474
+ if attn_mask is not None:
475
+ attn_mask = pad(attn_mask, (0, 1))
476
+ if key_padding_mask is not None:
477
+ key_padding_mask = pad(key_padding_mask, (0, 1))
478
+ else:
479
+ assert bias_k is None
480
+ assert bias_v is None
481
+
482
+ #
483
+ # reshape q, k, v for multihead attention and make em batch first
484
+ #
485
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
486
+ if static_k is None:
487
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
488
+ else:
489
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
490
+ assert static_k.size(0) == bsz * num_heads, \
491
+ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
492
+ assert static_k.size(2) == head_dim, \
493
+ f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
494
+ k = static_k
495
+ if static_v is None:
496
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
497
+ else:
498
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
499
+ assert static_v.size(0) == bsz * num_heads, \
500
+ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
501
+ assert static_v.size(2) == head_dim, \
502
+ f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
503
+ v = static_v
504
+
505
+ # add zero attention along batch dimension (now first)
506
+ if add_zero_attn:
507
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
508
+ k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
509
+ v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
510
+ if attn_mask is not None:
511
+ attn_mask = pad(attn_mask, (0, 1))
512
+ if key_padding_mask is not None:
513
+ key_padding_mask = pad(key_padding_mask, (0, 1))
514
+
515
+ # update source sequence length after adjustments
516
+ src_len = k.size(1)
517
+
518
+ # merge key padding and attention masks
519
+ if key_padding_mask is not None:
520
+ assert key_padding_mask.shape == (bsz, src_len), \
521
+ f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
522
+ key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
523
+ expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
524
+ if attn_mask is None:
525
+ attn_mask = key_padding_mask
526
+ else:
527
+ attn_mask = attn_mask + key_padding_mask
528
+
529
+ # adjust dropout probability
530
+ if not training:
531
+ dropout_p = 0.0
532
+
533
+ #
534
+ # (deep breath) calculate attention and out projection
535
+ #
536
+
537
+ if need_weights:
538
+ B, Nt, E = q.shape
539
+ q_scaled = q / math.sqrt(E)
540
+
541
+ assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
542
+
543
+ if attn_mask is not None:
544
+ attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
545
+ else:
546
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
547
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
548
+ if dropout_p > 0.0:
549
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
550
+
551
+ attn_output = torch.bmm(attn_output_weights, v)
552
+
553
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
554
+ attn_output = self.out_proj(attn_output)
555
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
556
+
557
+ # optionally average attention weights over heads
558
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
559
+ if average_attn_weights:
560
+ attn_output_weights = attn_output_weights.mean(dim=1)
561
+
562
+ if not is_batched:
563
+ # squeeze the output if input was unbatched
564
+ attn_output = attn_output.squeeze(1)
565
+ attn_output_weights = attn_output_weights.squeeze(0)
566
+ return attn_output, attn_output_weights
567
+ else:
568
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
569
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
570
+ # in order to match the input for SDPA of (N, num_heads, L, S)
571
+ if attn_mask is not None:
572
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
573
+ attn_mask = attn_mask.unsqueeze(0)
574
+ else:
575
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
576
+
577
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
578
+ k = k.view(bsz, num_heads, src_len, head_dim)
579
+ v = v.view(bsz, num_heads, src_len, head_dim)
580
+
581
+ attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
582
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
583
+
584
+ attn_output = self.out_proj(attn_output)
585
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
586
+ if not is_batched:
587
+ # squeeze the output if input was unbatched
588
+ attn_output = attn_output.squeeze(1)
589
+ return attn_output, None
590
+
591
+
592
+ def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
593
+ key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
594
+ # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
595
+ # and returns if the input is batched or not.
596
+ # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
597
+
598
+ # Shape check.
599
+ if query.dim() == 3:
600
+ # Batched Inputs
601
+ is_batched = True
602
+ assert key.dim() == 3 and value.dim() == 3, \
603
+ ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
604
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
605
+ if key_padding_mask is not None:
606
+ assert key_padding_mask.dim() == 2, \
607
+ ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
608
+ f" but found {key_padding_mask.dim()}-D tensor instead")
609
+ if attn_mask is not None:
610
+ assert attn_mask.dim() in (2, 3), \
611
+ ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
612
+ f" but found {attn_mask.dim()}-D tensor instead")
613
+ elif query.dim() == 2:
614
+ # Unbatched Inputs
615
+ is_batched = False
616
+ assert key.dim() == 2 and value.dim() == 2, \
617
+ ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
618
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
619
+
620
+ if key_padding_mask is not None:
621
+ assert key_padding_mask.dim() == 1, \
622
+ ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
623
+ f" but found {key_padding_mask.dim()}-D tensor instead")
624
+
625
+ if attn_mask is not None:
626
+ assert attn_mask.dim() in (2, 3), \
627
+ ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
628
+ f" but found {attn_mask.dim()}-D tensor instead")
629
+ if attn_mask.dim() == 3:
630
+ expected_shape = (num_heads, query.shape[0], key.shape[0])
631
+ assert attn_mask.shape == expected_shape, \
632
+ (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
633
+ else:
634
+ raise AssertionError(
635
+ f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
636
+
637
+ return is_batched
638
+
639
+
640
+ def _canonical_mask(
641
+ mask: Optional[Tensor],
642
+ mask_name: str,
643
+ other_type: Optional[DType],
644
+ other_name: str,
645
+ target_type: DType,
646
+ check_other: bool = True,
647
+ ) -> Optional[Tensor]:
648
+
649
+ if mask is not None:
650
+ _mask_dtype = mask.dtype
651
+ _mask_is_float = torch.is_floating_point(mask)
652
+ if _mask_dtype != torch.bool and not _mask_is_float:
653
+ raise AssertionError(
654
+ f"only bool and floating types of {mask_name} are supported")
655
+ if check_other and other_type is not None:
656
+ if _mask_dtype != other_type:
657
+ warnings.warn(
658
+ f"Support for mismatched {mask_name} and {other_name} "
659
+ "is deprecated. Use same type for both instead."
660
+ )
661
+ if not _mask_is_float:
662
+ mask = (
663
+ torch.zeros_like(mask, dtype=target_type)
664
+ .masked_fill_(mask, float("-inf"))
665
+ )
666
+ return mask
667
+
668
+
669
+ def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
670
+ if input is None:
671
+ return None
672
+ elif isinstance(input, torch.Tensor):
673
+ return input.dtype
674
+ raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
675
+
676
+ def _in_projection_packed(
677
+ q: Tensor,
678
+ k: Tensor,
679
+ v: Tensor,
680
+ w: Tensor,
681
+ b: Optional[Tensor] = None,
682
+ ) -> List[Tensor]:
683
+ r"""
684
+ Performs the in-projection step of the attention operation, using packed weights.
685
+ Output is a triple containing projection tensors for query, key and value.
686
+ Args:
687
+ q, k, v: query, key and value tensors to be projected. For self-attention,
688
+ these are typically the same tensor; for encoder-decoder attention,
689
+ k and v are typically the same tensor. (We take advantage of these
690
+ identities for performance if they are present.) Regardless, q, k and v
691
+ must share a common embedding dimension; otherwise their shapes may vary.
692
+ w: projection weights for q, k and v, packed into a single tensor. Weights
693
+ are packed along dimension 0, in q, k, v order.
694
+ b: optional projection biases for q, k and v, packed into a single tensor
695
+ in q, k, v order.
696
+ Shape:
697
+ Inputs:
698
+ - q: :math:`(..., E)` where E is the embedding dimension
699
+ - k: :math:`(..., E)` where E is the embedding dimension
700
+ - v: :math:`(..., E)` where E is the embedding dimension
701
+ - w: :math:`(E * 3, E)` where E is the embedding dimension
702
+ - b: :math:`E * 3` where E is the embedding dimension
703
+ Output:
704
+ - in output list :math:`[q', k', v']`, each output tensor will have the
705
+ same shape as the corresponding input tensor.
706
+ """
707
+ E = q.size(-1)
708
+ if k is v:
709
+ if q is k:
710
+ # self-attention
711
+ proj = linear(q, w, b)
712
+ # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
713
+ proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
714
+ return proj[0], proj[1], proj[2]
715
+ else:
716
+ # encoder-decoder attention
717
+ w_q, w_kv = w.split([E, E * 2])
718
+ if b is None:
719
+ b_q = b_kv = None
720
+ else:
721
+ b_q, b_kv = b.split([E, E * 2])
722
+ q_proj = linear(q, w_q, b_q)
723
+ kv_proj = linear(k, w_kv, b_kv)
724
+ # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
725
+ kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
726
+ return (q_proj, kv_proj[0], kv_proj[1])
727
+ else:
728
+ w_q, w_k, w_v = w.chunk(3)
729
+ if b is None:
730
+ b_q = b_k = b_v = None
731
+ else:
732
+ b_q, b_k, b_v = b.chunk(3)
733
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
734
+
735
+
736
+ def _in_projection(
737
+ q: Tensor,
738
+ k: Tensor,
739
+ v: Tensor,
740
+ w_q: Tensor,
741
+ w_k: Tensor,
742
+ w_v: Tensor,
743
+ b_q: Optional[Tensor] = None,
744
+ b_k: Optional[Tensor] = None,
745
+ b_v: Optional[Tensor] = None,
746
+ ) -> Tuple[Tensor, Tensor, Tensor]:
747
+ r"""
748
+ Performs the in-projection step of the attention operation. This is simply
749
+ a triple of linear projections, with shape constraints on the weights which
750
+ ensure embedding dimension uniformity in the projected outputs.
751
+ Output is a triple containing projection tensors for query, key and value.
752
+ Args:
753
+ q, k, v: query, key and value tensors to be projected.
754
+ w_q, w_k, w_v: weights for q, k and v, respectively.
755
+ b_q, b_k, b_v: optional biases for q, k and v, respectively.
756
+ Shape:
757
+ Inputs:
758
+ - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
759
+ number of leading dimensions.
760
+ - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
761
+ number of leading dimensions.
762
+ - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
763
+ number of leading dimensions.
764
+ - w_q: :math:`(Eq, Eq)`
765
+ - w_k: :math:`(Eq, Ek)`
766
+ - w_v: :math:`(Eq, Ev)`
767
+ - b_q: :math:`(Eq)`
768
+ - b_k: :math:`(Eq)`
769
+ - b_v: :math:`(Eq)`
770
+ Output: in output triple :math:`(q', k', v')`,
771
+ - q': :math:`[Qdims..., Eq]`
772
+ - k': :math:`[Kdims..., Eq]`
773
+ - v': :math:`[Vdims..., Eq]`
774
+ """
775
+ Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
776
+ assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
777
+ assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
778
+ assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
779
+ assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
780
+ assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
781
+ assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
782
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
tokenization_minicpmv_fast.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.qwen2 import Qwen2TokenizerFast
2
+
3
+
4
+ class MiniCPMVTokenizerFast(Qwen2TokenizerFast):
5
+ def __init__(self, **kwargs):
6
+ super().__init__(**kwargs)
7
+ self.im_start = "<image>"
8
+ self.im_end = "</image>"
9
+ self.ref_start = "<ref>"
10
+ self.ref_end = "</ref>"
11
+ self.box_start = "<box>"
12
+ self.box_end = "</box>"
13
+ self.quad_start = "<quad>"
14
+ self.quad_end = "</quad>"
15
+ self.slice_start = "<slice>"
16
+ self.slice_end = "</slice>"
17
+ self.im_id_start = "<image_id>"
18
+ self.im_id_end = "</image_id>"
19
+
20
+ @property
21
+ def eos_id(self):
22
+ return self.eos_token_id
23
+
24
+ @property
25
+ def bos_id(self):
26
+ return self.bos_token_id
27
+
28
+ @property
29
+ def unk_id(self):
30
+ return self.unk_token_id
31
+
32
+ @property
33
+ def im_start_id(self):
34
+ return self.convert_tokens_to_ids(self.im_start)
35
+
36
+ @property
37
+ def im_end_id(self):
38
+ return self.convert_tokens_to_ids(self.im_end)
39
+
40
+ @property
41
+ def slice_start_id(self):
42
+ return self.convert_tokens_to_ids(self.slice_start)
43
+
44
+ @property
45
+ def slice_end_id(self):
46
+ return self.convert_tokens_to_ids(self.slice_end)
47
+
48
+ @property
49
+ def im_id_start_id(self):
50
+ return self.convert_tokens_to_ids(self.im_id_start)
51
+
52
+ @property
53
+ def im_id_end_id(self):
54
+ return self.convert_tokens_to_ids(self.im_id_end)
55
+
56
+ @property
57
+ def newline_id(self):
58
+ return self.convert_tokens_to_ids('\n')
59
+
60
+ @staticmethod
61
+ def escape(text: str) -> str:
62
+ return text
63
+
64
+ @staticmethod
65
+ def unescape(text: str) -> str:
66
+ return text