Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- imagenet-1k
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
pipeline_tag: image-classification
|
8 |
---
|
9 |
+
# VisionLLaMA-Base-MAE
|
10 |
+
|
11 |
+
With the Masked Autoencoders' paradigm, VisionLLaMA-Large-MAE model is trained on ImageNet-1K without labels. It retains improvements over classification tasks (SFT, linear probing) on ImageNet-1K.
|
12 |
+
|
13 |
+
| Model | ImageNet Acc (SFT) | ImageNet Acc (Linear Probe) |
|
14 |
+
| -- | -- | --|
|
15 |
+
| VisionLLaMA-Large-MAE (ep800) |85.5 | 77.3 |
|
16 |
+
|
17 |
+
# How to Use
|
18 |
+
|
19 |
+
Please refer the [Github](https://github.com/Meituan-AutoML/VisionLLaMA) page for usage.
|
20 |
+
|
21 |
+
# Citation
|
22 |
+
|
23 |
+
```
|
24 |
+
@article{chu2024visionllama,
|
25 |
+
title={VisionLLaMA: A Unified LLaMA Interface for Vision Tasks},
|
26 |
+
author={Chu, Xiangxiang and Su, Jianlin and Zhang, Bo and Shen, Chunhua},
|
27 |
+
journal={arXiv preprint arXiv:2403.00522},
|
28 |
+
year={2024}
|
29 |
+
}
|
30 |
+
```
|