File size: 2,296 Bytes
eb191e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
base_model: imvladikon/alephbertgimmel-base-512
tags:
- generated_from_trainer
datasets:
- nemo_corpus
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: aleph_bert_gimmel-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nemo_corpus
type: nemo_corpus
config: flat_token
split: validation
args: flat_token
metrics:
- name: Precision
type: precision
value: 0.8048128342245989
- name: Recall
type: recall
value: 0.8058902275769746
- name: F1
type: f1
value: 0.8053511705685619
- name: Accuracy
type: accuracy
value: 0.9723507148864592
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aleph_bert_gimmel-finetuned-ner
This model is a fine-tuned version of [imvladikon/alephbertgimmel-base-512](https://huggingface.co./imvladikon/alephbertgimmel-base-512) on the nemo_corpus dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1231
- Precision: 0.8048
- Recall: 0.8059
- F1: 0.8054
- Accuracy: 0.9724
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.375 | 1.0 | 618 | 0.1505 | 0.7767 | 0.7590 | 0.7678 | 0.9660 |
| 0.1377 | 2.0 | 1236 | 0.1240 | 0.8188 | 0.8046 | 0.8116 | 0.9720 |
| 0.0967 | 3.0 | 1854 | 0.1231 | 0.8048 | 0.8059 | 0.8054 | 0.9724 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cpu
- Datasets 2.15.0
- Tokenizers 0.15.0
|