--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-finetuning-italian results: [] --- # bert-finetuning-italian This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6235 - Model Preparation Time: 0.0031 - Accuracy: 0.7884 - F1 Macro: 0.7930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:--------:| | 0.9248 | 1.0 | 735 | 0.7024 | 0.0031 | 0.6980 | 0.7054 | | 0.6144 | 2.0 | 1470 | 0.6166 | 0.0031 | 0.7435 | 0.7528 | | 0.4442 | 3.0 | 2205 | 0.6160 | 0.0031 | 0.7660 | 0.7734 | | 0.4063 | 4.0 | 2940 | 0.6722 | 0.0031 | 0.7578 | 0.7727 | | 0.3008 | 5.0 | 3675 | 0.7124 | 0.0031 | 0.7748 | 0.7839 | | 0.2477 | 6.0 | 4410 | 0.7990 | 0.0031 | 0.7728 | 0.7801 | | 0.1757 | 7.0 | 5145 | 0.9441 | 0.0031 | 0.7612 | 0.7717 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0