--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLama3-3B-finetuning results: [] --- # LLama3-3B-finetuning This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co./meta-llama/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4744 - Accuracy: 0.8077 - F1 Macro: 0.8046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 2.4745 | 1.0 | 149 | 1.1147 | 0.5471 | 0.5000 | | 1.0995 | 2.0 | 298 | 0.5006 | 0.8047 | 0.8023 | | 0.7117 | 3.0 | 447 | 0.4292 | 0.8215 | 0.8218 | | 0.5494 | 4.0 | 596 | 0.4039 | 0.8468 | 0.8469 | | 0.4276 | 5.0 | 745 | 0.3924 | 0.8418 | 0.8415 | | 0.2451 | 6.0 | 894 | 0.4101 | 0.8300 | 0.8312 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0