--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLama3-1B-finetuning results: [] --- # LLama3-1B-finetuning This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co./meta-llama/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3472 - Accuracy: 0.8694 - F1 Macro: 0.8692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 1.3459 | 1.0 | 360 | 0.7530 | 0.6667 | 0.6615 | | 0.8291 | 2.0 | 720 | 0.4807 | 0.8021 | 0.7951 | | 0.8198 | 3.0 | 1080 | 0.4037 | 0.8306 | 0.8255 | | 0.6597 | 4.0 | 1440 | 0.4082 | 0.8292 | 0.8270 | | 0.5621 | 5.0 | 1800 | 0.3817 | 0.8438 | 0.8410 | | 0.5646 | 6.0 | 2160 | 0.3784 | 0.8472 | 0.8453 | | 0.4532 | 7.0 | 2520 | 0.3879 | 0.8431 | 0.8401 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0