--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - generated_from_trainer model-index: - name: tinyllama-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true eval_sample_packing: False #Poco dato load_in_8bit: false load_in_4bit: false strict: false datasets: - path: data.json # or json ds_type: json # see other options below type: completion dataset_prepared_path: val_set_size: 0.05 # output_dir: ./lora-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true # adapter: lora # lora_model_dir: # lora_r: 32 # lora_alpha: 16 # lora_dropout: 0.05 # lora_target_linear: true # lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./tinyllama-out gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 8 #2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false #TODO: change to true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true save_strategy: "no" warmup_steps: 10 evals_per_epoch: 4 # saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# tinyllama-out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9894 | 0.13 | 1 | 1.5790 | | 1.915 | 0.26 | 2 | 1.4849 | | 1.642 | 0.52 | 4 | 1.4032 | | 1.5396 | 0.77 | 6 | 1.4059 | | 1.3746 | 1.03 | 8 | 1.4101 | | 0.9355 | 1.23 | 10 | 1.5147 | | 0.9266 | 1.48 | 12 | 1.5291 | | 0.8006 | 1.74 | 14 | 1.4724 | | 0.7664 | 2.0 | 16 | 1.4965 | | 0.4813 | 2.16 | 18 | 1.5715 | | 0.4193 | 2.42 | 20 | 1.5436 | | 0.364 | 2.68 | 22 | 1.6040 | | 0.3592 | 2.94 | 24 | 1.5823 | | 0.1884 | 3.13 | 26 | 1.6850 | | 0.159 | 3.39 | 28 | 1.8316 | | 0.1641 | 3.65 | 30 | 1.7286 | | 0.1512 | 3.9 | 32 | 1.7029 | | 0.1563 | 4.06 | 34 | 1.7033 | | 0.0696 | 4.32 | 36 | 1.7482 | | 0.0643 | 4.58 | 38 | 1.8069 | | 0.0662 | 4.84 | 40 | 1.8410 | | 0.0709 | 5.1 | 42 | 1.8529 | | 0.0344 | 5.26 | 44 | 1.8626 | | 0.0468 | 5.52 | 46 | 1.8716 | | 0.0328 | 5.77 | 48 | 1.8761 | | 0.0353 | 6.03 | 50 | 1.8789 | | 0.0375 | 6.23 | 52 | 1.8803 | | 0.0345 | 6.48 | 54 | 1.8802 | | 0.0346 | 6.74 | 56 | 1.8806 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0