File size: 1,960 Bytes
5ae714c 66af9fd 5ae714c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: convnext-tiny-finetuned-beans
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9609375
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-finetuned-beans
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co./facebook/convnext-tiny-224) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1255
- Accuracy: 0.9609
![pic](https://huggingface.co./proxy-datasets-preview/assets/beans/--/default/test/96/image/image.jpg)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 7171
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 37 | 0.6175 | 0.8828 |
| No log | 2.0 | 74 | 0.2307 | 0.9609 |
| 0.5237 | 3.0 | 111 | 0.1406 | 0.9531 |
| 0.5237 | 4.0 | 148 | 0.1165 | 0.9688 |
| 0.5237 | 5.0 | 185 | 0.1255 | 0.9609 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|