--- library_name: transformers license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: cf-albert-finetuned1 results: [] --- # cf-albert-finetuned1 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4513 - F1: 0.2897 - Roc Auc: 0.5790 - Accuracy: 0.0826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4712 | 1.0 | 908 | 0.4797 | 0.0104 | 0.5024 | 0.0055 | | 0.4862 | 2.0 | 1816 | 0.4579 | 0.2726 | 0.5727 | 0.0936 | | 0.4447 | 3.0 | 2724 | 0.4438 | 0.3161 | 0.5899 | 0.1101 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3