--- base_model: karakuri-ai/karakuri-lm-8x7b-instruct-v0.1 datasets: - databricks/databricks-dolly-15k - glaiveai/glaive-code-assistant-v3 - glaiveai/glaive-function-calling-v2 - gretelai/synthetic_text_to_sql - meta-math/MetaMathQA - microsoft/orca-math-word-problems-200k - neural-bridge/rag-dataset-12000 - neural-bridge/rag-hallucination-dataset-1000 - nvidia/HelpSteer - OpenAssistant/oasst2 language: - en - ja library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mixtral - steerlm --- ## About static quants of https://huggingface.co./karakuri-ai/karakuri-lm-8x7b-instruct-v0.1 weighted/imatrix quants are available at https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q2_K.gguf) | Q2_K | 17.4 | | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q3_K_S.gguf) | Q3_K_S | 20.5 | | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q3_K_M.gguf) | Q3_K_M | 22.6 | lower quality | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q3_K_L.gguf) | Q3_K_L | 24.3 | | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.IQ4_XS.gguf) | IQ4_XS | 25.5 | | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q4_K_S.gguf) | Q4_K_S | 26.8 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 28.5 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q5_K_S.gguf) | Q5_K_S | 32.3 | | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 33.3 | | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q6_K.gguf) | Q6_K | 38.5 | very good quality | | [GGUF](https://huggingface.co./mradermacher/karakuri-lm-8x7b-instruct-v0.1-GGUF/resolve/main/karakuri-lm-8x7b-instruct-v0.1.Q8_0.gguf) | Q8_0 | 49.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co./mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.