--- base_model: one-man-army/UNA-34Beagles-32K-bf16-v1 datasets: - allenai/ai2_arc - unalignment/spicy-3.1 - codeparrot/apps - facebook/belebele - boolq - jondurbin/cinematika-v0.1 - drop - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - cais/mmlu - Muennighoff/natural-instructions - openbookqa - piqa - Vezora/Tested-22k-Python-Alpaca - cakiki/rosetta-code - Open-Orca/SlimOrca - spider - squad_v2 - migtissera/Synthia-v1.3 - datasets/winogrande - nvidia/HelpSteer - Intel/orca_dpo_pairs - unalignment/toxic-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - allenai/ultrafeedback_binarized_cleaned - Squish42/bluemoon-fandom-1-1-rp-cleaned - LDJnr/Capybara - JULIELab/EmoBank - kingbri/PIPPA-shareGPT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About weighted/imatrix quants of https://huggingface.co./one-man-army/UNA-34Beagles-32K-bf16-v1 static quants are available at https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 7.6 | for the desperate | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 8.3 | mostly desperate | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.6 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q4_0.gguf) | i1-Q4_0 | 19.6 | fast, low quality | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co./mradermacher/UNA-34Beagles-32K-bf16-v1-i1-GGUF/resolve/main/UNA-34Beagles-32K-bf16-v1.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co./mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co./nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.