--- base_model: prithivMLmods/QwQ-R1-Distill-1.5B-CoT datasets: - AI-MO/NuminaMath-CoT - prithivMLmods/Math-Solve - amphora/QwQ-LongCoT-130K - prithivMLmods/Deepthink-Reasoning - NovaSky-AI/Sky-T1_data_17k language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - QwQ - Distill - R1 - Deepseek - Qwen2.5 - text-generation-inference --- ## About static quants of https://huggingface.co./prithivMLmods/QwQ-R1-Distill-1.5B-CoT weighted/imatrix quants are available at https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co./mradermacher/QwQ-R1-Distill-1.5B-CoT-GGUF/resolve/main/QwQ-R1-Distill-1.5B-CoT.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co./mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.