--- base_model: hf-100/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit language: - en library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl --- ## About static quants of https://huggingface.co./hf-100/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit weighted/imatrix quants are available at https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co./mradermacher/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit-GGUF/resolve/main/Llama-3.1-Spellbound-StoryWriter-70b-instruct-0.4-16bit.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co./mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co./nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.