File size: 3,003 Bytes
b579be8 62f41bd b579be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
base_model: Brillibits/Instruct_Llama70B_Dolly15k
datasets:
- databricks/databricks-dolly-15k
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co./Brillibits/Instruct_Llama70B_Dolly15k
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q2_K.gguf) | Q2_K | 25.6 | |
| [GGUF](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q3_K_S.gguf) | Q3_K_S | 30.0 | |
| [GGUF](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q3_K_M.gguf) | Q3_K_M | 33.4 | lower quality |
| [GGUF](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q4_K_S.gguf) | Q4_K_S | 39.3 | fast, recommended |
| [PART 1](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q6_K.gguf.part2of2) | Q6_K | 56.7 | very good quality |
| [PART 1](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co./mradermacher/Instruct_Llama70B_Dolly15k-GGUF/resolve/main/Instruct_Llama70B_Dolly15k.Q8_0.gguf.part2of2) | Q8_0 | 73.4 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co./mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|