File size: 4,582 Bytes
d0fef18
 
 
 
 
e7728df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0fef18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8577038
 
 
 
 
 
d0fef18
 
e7728df
d0fef18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
base_model: Spestly/Atlas-Pro-7B-Preview-1M
datasets:
- prithivMLmods/PyCodeZone
- bespokelabs/Bespoke-Stratos-17k
- openai/gsm8k
- rubenroy/GammaCorpus-v1-50k-UNFILTERED
extra_gated_fields:
  Country: country
  Date of Birth: date_picker
  I agree to use this model in accordance with all applicable laws and ethical guidelines: checkbox
  I agree to use this model under the MIT licence: checkbox
  Intended Use:
    options:
    - Research
    - Education
    - Personal Development
    - Commercial Use
    - label: Other
      value: other
    type: select
  Name: text
  Organization: text
extra_gated_prompt: By accessing this model, you agree to comply with ethical usage
  guidelines and accept full responsibility for its applications. You will not use
  this model for harmful, malicious, or illegal activities, and you understand that
  the model's use is subject to ongoing monitoring for misuse. This model is provided
  'AS IS' and agreeing to this means that you are responsible for all the outputs
  generated by you
language:
- en
- zh
- fr
- es
- pt
- de
- it
- ru
- ja
- ko
- vi
- th
- ar
- fa
- he
- tr
- cs
- pl
- hi
- bn
- ur
- id
- ms
- lo
- my
- ceb
- km
- tl
- nl
library_name: transformers
license: mit
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co./Spestly/Atlas-Pro-7B-Preview-1M

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q2_K.gguf) | Q2_K | 3.1 |  |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q3_K_S.gguf) | Q3_K_S | 3.6 |  |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q3_K_L.gguf) | Q3_K_L | 4.2 |  |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.IQ4_XS.gguf) | IQ4_XS | 4.4 |  |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q5_K_S.gguf) | Q5_K_S | 5.4 |  |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q5_K_M.gguf) | Q5_K_M | 5.5 |  |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co./mradermacher/Atlas-Pro-7B-Preview-1M-GGUF/resolve/main/Atlas-Pro-7B-Preview-1M.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co./mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->