--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv8-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tr metrics: - name: Test WER type: wer value: 10.61 - name: Test CER type: cer value: 2.67 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 36.46 - name: Test CER type: cer value: 12.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 40.91 --- # wav2vec2-xls-r-300m-cv8-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 8.0 TR](https://huggingface.co./datasets/mozilla-foundation/common_voice_8_0) All `validated` split except `test` split was used for training. ## Training procedure To support the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2.5e-4 - num_train_epochs 20 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 8 TR test split| 10.61 | 2.67 | |Speech Recognition Community dev data| 36.46 | 12.38 |