--- language: en pipeline_tag: sentence-similarity tags: - patent-similarity - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - mpi-inno-comp/paecter_dataset license: apache-2.0 --- # pat_specter This is a [sentence-transformers](https://www.SBERT.net) model. This model is fine-tuned on patent texts, leveraging SPECTER 2.0 as a base, which is provided by Allen Institute for AI. It maps patent text to a 768 dimensional dense vector space and can be used for patent-specific downstream tasks. However, it is noteworthy that [PaECTER](https://huggingface.co./mpi-inno-comp/paecter) outperforms this model in terms of performance. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('mpi-inno-comp/pat_specter') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('mpi-inno-comp/pat_specter') model = AutoModel.from_pretrained('mpi-inno-comp/pat_specter') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length=512) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 159375 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CustomTripletLoss.CustomTripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 1} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 2000, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ``` @misc{ghosh2024paecter, title={PaECTER: Patent-level Representation Learning using Citation-informed Transformers}, author={Mainak Ghosh and Sebastian Erhardt and Michael E. Rose and Erik Buunk and Dietmar Harhoff}, year={2024}, eprint={2402.19411}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```