File size: 3,973 Bytes
90ce0b1 4f84d7e 90ce0b1 4f84d7e ea19e58 696cfad 4f84d7e add7c13 4f84d7e 78753c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language: en
pipeline_tag: sentence-similarity
tags:
- patent-similarity
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- patents
license: apache-2.0
---
# pat_specter
This is a [sentence-transformers](https://www.SBERT.net) model. This model is fine-tuned on patent texts, leveraging SPECTER 2.0 as a base, which is provided by Allen Institute for AI. It maps patent text to a 768 dimensional dense vector space and can be used for patent-specific downstream tasks.
However, it is noteworthy that [PaECTER](https://huggingface.co./mpi-inno-comp/paecter) outperforms this model in terms of performance.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mpi-inno-comp/pat_specter')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('mpi-inno-comp/pat_specter')
model = AutoModel.from_pretrained('mpi-inno-comp/pat_specter')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length=512)
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 159375 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CustomTripletLoss.CustomTripletLoss` with parameters:
```
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 1}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 2000,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
```
@misc{ghosh2024paecter,
title={PaECTER: Patent-level Representation Learning using Citation-informed Transformers},
author={Mainak Ghosh and Sebastian Erhardt and Michael E. Rose and Erik Buunk and Dietmar Harhoff},
year={2024},
eprint={2402.19411},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
``` |