--- base_model: - alpindale/Mistral-7B-v0.2-hf - mistralai/Mistral-7B-Instruct-v0.2 - SanjiWatsuki/Kunoichi-DPO-v2-7B library_name: transformers tags: - mergekit - merge --- This is an ExLlamaV2 quantized model in 4bpw of [mpasila/Kunoichi-DPO-v2-Instruct-32k-7B](https://huggingface.co./mpasila/Kunoichi-DPO-v2-Instruct-32k-7B) using the default calibration dataset. # Original Model card: # Kunoichi-DPO-v2-Instruct-32k-7B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). This hopefully gives 32k context for Kunoichi-DPO-v2 model though since it also uses the instruct model it might change its behavior somewhat. Merge script copied from this [ichigoberry/pandafish-2-7b-32k](https://huggingface.co./ichigoberry/pandafish-2-7b-32k). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co./alpindale/Mistral-7B-v0.2-hf) as a base. ### Models Merged The following models were included in the merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co./SanjiWatsuki/Kunoichi-DPO-v2-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: alpindale/Mistral-7B-v0.2-hf # No parameters necessary for base model - model: mistralai/Mistral-7B-Instruct-v0.2 parameters: density: 0.53 weight: 0.4 - model: SanjiWatsuki/Kunoichi-DPO-v2-7B parameters: density: 0.53 weight: 0.4 merge_method: dare_ties base_model: alpindale/Mistral-7B-v0.2-hf parameters: int8_mask: true dtype: bfloat16 ```