--- license: llama2 inference: parameters: do_sample: false max_length: 200 widget: - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" example_title: "read test.csv" - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" example_title: "get _amount columns" - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.\n\n### Input:\nHere is the database schema that the SQL query will run on:\nCREATE TABLE rideshare (\n hvfhs_license_num varchar,\n dispatching_base_num varchar,\n originating_base_num varchar,\n request_datetime timestamp,\n on_scene_datetime timestamp,\n pickup_datetime timestamp,\n dropoff_datetime timestamp,\n trip_miles double,\n trip_time bigint,\n\n);\n\n### Question:\nget longest trip in december 2022\n\n### Response (use duckdb shorthand if possible):" example_title: "taxi trips" --- # DuckDB-NSQL-7B (GGUF) The repository includes model files in the GGUF format for [DuckDB-NSQL-7B-v0.1](https://huggingface.co./motherduckdb/DuckDB-NSQL-7B-v0.1), featuring both the f16 and Q8_0 versions. ## Provided model files | Name | Quant method | Bits | | ---- | ---- | ---- | | [DuckDB-NSQL-7B-v0.1-f16.gguf](https://huggingface.co./motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF/blob/main/DuckDB-NSQL-7B-v0.1-f16.gguf) | - | 16 | | [DuckDB-NSQL-7B-v0.1-q8_0.gguf](https://huggingface.co./motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF/blob/main/DuckDB-NSQL-7B-v0.1-q8_0.gguf) | Q8_0 | 8 | ## Model Description NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co./meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs. ## Training Data 200k DuckDB text-to-SQL pairs, synthetically generated using [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1), guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from [NSText2SQL](https://huggingface.co./datasets/NumbersStation/NSText2SQL) that were transpiled to DuckDB SQL using [sqlglot](https://github.com/tobymao/sqlglot). ## Evaluation Data We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/). ## Training Procedure DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs. ## Intended Use and Limitations The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs. In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions. ## How to Use Setup llama.cpp: ```shell CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python huggingface-cli download motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF DuckDB-NSQL-7B-v0.1-q8_0.gguf --local-dir . --local-dir-use-symlinks False pip install wurlitzer ``` Example 1: ```python ## Setup - Llama.cpp from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question. ### Input: ### Question: create a new table called tmp from test.csv ### Response (use duckdb shorthand if possible): """ with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` Example 2: ```python from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE taxi ( VendorID bigint, tpep_pickup_datetime timestamp, tpep_dropoff_datetime timestamp, passenger_count double, trip_distance double, fare_amount double, extra double, tip_amount double, tolls_amount double, improvement_surcharge double, total_amount double, ); ### Question: get all columns ending with _amount from taxi table ### Response (use duckdb shorthand if possible):""" with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` Example 3: ```python from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE rideshare ( hvfhs_license_num varchar, dispatching_base_num varchar, originating_base_num varchar, request_datetime timestamp, on_scene_datetime timestamp, pickup_datetime timestamp, dropoff_datetime timestamp, trip_miles double, trip_time bigint, ); ### Question: get longest trip in december 2022 ### Response (use duckdb shorthand if possible): """ with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL).