|
import torch |
|
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline |
|
from peft import PeftModel |
|
import re |
|
import gradio as gr |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained('mostafaamiri/persian_llama_7b') |
|
|
|
base_model = LlamaForCausalLM.from_pretrained( |
|
"meta-llama/Llama-2-7b-hf", |
|
load_in_8bit=False, |
|
) |
|
base_model.resize_token_embeddings(len(tokenizer)) |
|
|
|
model = PeftModel.from_pretrained( |
|
base_model, |
|
"mostafaamiri/persian_llama_7b",) |
|
|
|
|
|
prompt_input = ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n\n{instruction}\n\n### Response:\n\n" |
|
) |
|
|
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
instruction = instruction + '\n' + input |
|
return prompt_input.format_map({'instruction': instruction}) |
|
config=dict( |
|
temperature=0.2, |
|
top_k=40, |
|
top_p=0.9, |
|
do_sample=True, |
|
num_beams=1, |
|
repetition_penalty=1.2, |
|
max_new_tokens=300 |
|
) |
|
|
|
|
|
def launch_model(text): |
|
|
|
sample_data = [text] |
|
inputToken = tokenizer(generate_prompt(sample_data) , return_tensors="pt") |
|
|
|
outputs = model.generate(**inputToken, **config) |
|
output = tokenizer.decode(outputs[0],skip_special_tokens=True) |
|
output = re.sub(r"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n\[.*\]\n\n### Response:\n\n", "", output) |
|
|
|
return output |
|
|
|
|
|
iface = gr.Interface(fn=launch_model, inputs="text", outputs="text") |
|
iface.launch() |