whisper-medium-GGML / whisper_processor.py
mosesdaudu's picture
Upload whisper_processor.py with huggingface_hub
d5280af verified
raw
history blame
2.06 kB
import subprocess
import sys
import os
import time
def process_audio(wav_file, model_name="base.en"):
"""
Processes an audio file using a specified model and returns the processed string.
:param wav_file: Path to the WAV file
:param model_name: Name of the model to use
:return: Processed string output from the audio processing
:raises: Exception if an error occurs during processing
"""
# model = f"./models/ggml-{model_name}.bin"
model = f"{model_name}.bin"
# Check if the file exists
if not os.path.exists(model):
raise FileNotFoundError(f"Model file not found: {model} \n\nDownload a model with this command:\n\n> bash ./models/download-ggml-model.sh {model_name}\n\n")
if not os.path.exists(wav_file):
raise FileNotFoundError(f"WAV file not found: {wav_file}")
full_command = f"./main -m {model} -f {wav_file} -np -nt"
start_time = time.time()
# Execute the command
process = subprocess.Popen(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Get the output and error (if any)
output, error = process.communicate()
end_time = time.time()
# Calculate the duration
duration = end_time - start_time
print(f"Time taken for CPP request: {duration:.2f} seconds")
if error:
raise Exception(f"Error processing audio: {error.decode('utf-8')}")
# Process and return the output string
decoded_str = output.decode('utf-8').strip()
processed_str = decoded_str.replace('[BLANK_AUDIO]', '').strip()
return processed_str
def main():
# if len(sys.argv) >= 2:
wav_file = sys.argv[1]
model_name = sys.argv[2] if len(sys.argv) == 3 else "base.en"
print("wav_file: ", wav_file)
print("model_name: ", model_name)
# try:
result = process_audio(wav_file, model_name)
print(result)
# except Exception as e:
# print(f"Error: {e}")
# else:
# print("Usage: python whisper_processor.py <wav_file> [<model_name>]")
if __name__ == "__main__":
main()