Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
File size: 16,447 Bytes
ba84330
14870ca
 
ba84330
7ab7042
 
 
 
 
 
14870ca
8667424
ba84330
 
 
 
7ab7042
ba84330
 
 
 
 
 
7ab7042
ba84330
 
 
 
 
14870ca
 
ba84330
 
 
7ab7042
ba84330
 
 
 
 
 
 
 
 
 
 
7ab7042
ba84330
 
7ab7042
 
 
 
 
 
 
 
 
 
14870ca
 
7ab7042
ba84330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14870ca
7ab7042
 
ba84330
 
 
 
 
 
 
 
 
 
 
14870ca
ba84330
 
 
 
 
 
 
14870ca
7ab7042
ba84330
 
 
 
7ab7042
14870ca
7ab7042
 
ba84330
 
14870ca
ba84330
 
 
7ab7042
 
ba84330
 
14870ca
ba84330
14870ca
ba84330
 
 
 
 
 
 
 
 
7ab7042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba84330
 
 
 
 
 
7ab7042
 
14870ca
 
 
 
 
 
7ab7042
 
 
14870ca
 
7ab7042
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""A HuggingFace-style model configuration."""
import warnings
from typing import Any, Dict, Optional, Union
from transformers import PretrainedConfig
from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
from .blocks import attn_config_defaults
from .fc import FC_CLASS_REGISTRY
from .norm import LPLayerNorm
from .ffn import FFN_CLASS_REGISTRY
from .warnings import VersionedDeprecationWarning
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}

class MPTConfig(PretrainedConfig):
    model_type = 'mpt'

    def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
        """The MPT configuration class.

        Args:
            d_model (int): The size of the embedding dimension of the model.
            n_heads (int): The number of attention heads.
            n_layers (int): The number of layers in the model.
            expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
            max_seq_len (int): The maximum sequence length of the model.
            vocab_size (int): The size of the vocabulary.
            resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
            emb_pdrop (float): The dropout probability for the embedding layer.
            learned_pos_emb (bool): Whether to use learned positional embeddings
            attn_config (Dict): A dictionary used to configure the model's attention module:
                attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
                attn_pdrop (float): The dropout probability for the attention layers.
                attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
                qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
                qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
                clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
                    this value.
                softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
                    use the default scale of ``1/sqrt(d_keys)``.
                prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
                    extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
                    can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
                attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
                    When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
                    which sub-sequence each token belongs to.
                    Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
                sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
                alibi (bool): Whether to use the alibi bias instead of position embeddings.
                alibi_bias_max (int): The maximum value of the alibi bias.
                rope (bool): Whether to use rotary positional embeddings.
                rope_theta (int): The base frequency for rope.
                rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
                rope_dail_config (Dict): The configuration for the dail implementation of rope.
                    type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
                    pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
                    xpos_scale_base (float): The scale base for XPos (if using XPos).
                rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
                    type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
                    factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
                kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
            ffn_config (Dict): A dictionary used to configure the model's ffn module:
                ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
            init_device (str): The device to use for parameter initialization.
            logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
            no_bias (bool): Whether to use bias in all layers.
            embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
            norm_type (str): choose type of norm to use
            use_cache (bool): Whether or not the model should return the last key/values attentions
            init_config (Dict): A dictionary used to configure the model initialization:
                init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
                    'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
                    'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
                init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
                emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
                emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
                    used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
                init_std (float): The standard deviation of the normal distribution used to initialize the model,
                    if using the baseline_ parameter initialization scheme.
                init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
                fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
                init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
                ---
                See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
            fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
            tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
            use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
        """
        self.d_model = d_model
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.expansion_ratio = expansion_ratio
        self.max_seq_len = max_seq_len
        self.vocab_size = vocab_size
        self.resid_pdrop = resid_pdrop
        self.emb_pdrop = emb_pdrop
        self.learned_pos_emb = learned_pos_emb
        self.attn_config = attn_config
        self.ffn_config = ffn_config
        self.init_device = init_device
        self.logit_scale = logit_scale
        self.no_bias = no_bias
        self.embedding_fraction = embedding_fraction
        self.norm_type = norm_type
        self.use_cache = use_cache
        self.init_config = init_config
        self.fc_type = fc_type
        self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
        if 'name' in kwargs:
            del kwargs['name']
        if 'loss_fn' in kwargs:
            del kwargs['loss_fn']
        if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
            self.learned_pos_emb = False
            warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
        self._validate_config()

    def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
        for (k, v) in config_defaults.items():
            if k not in config:
                config[k] = v
            elif isinstance(v, dict):
                config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
        return config

    def _validate_config(self) -> None:
        self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
        self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
        self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
        if self.d_model % self.n_heads != 0:
            raise ValueError('d_model must be divisible by n_heads')
        if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
            raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
        if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
            raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
        if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
            raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
        if self.attn_config['attn_impl'] == 'flash' and is_flash_v1_installed():
            warnings.warn(VersionedDeprecationWarning('Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.', remove_version='0.6.0'))
        if self.attn_config['attn_impl'] == 'triton' and (not self.attn_config['prefix_lm']):
            warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'))
        if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
            raise NotImplementedError('alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention.')
        if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] in ['torch', 'triton'] or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
            raise NotImplementedError('attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention.')
        if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
            raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
        if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
            raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
        if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
            if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
                raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
            if not is_flash_v2_installed(v2_version='2.0.1'):
                raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
        if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
            raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
        if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
            raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
        if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
            raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
        if self.init_config.get('name', None) is None:
            raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
        if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
            warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
        if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
            try:
                import transformer_engine.pytorch as te
                del te
            except:
                raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
        if self.ffn_config['ffn_type'] == 'mptgeglu':
            raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
        elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
            self.ffn_config['fc_type'] = self.fc_type
        elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
            self.ffn_config['bias'] = not self.no_bias
            if 'ffn_act_fn' in self.ffn_config.keys():
                raise ValueError(f'Transformer Engine block does not support custom activation functions.')
        if not self.use_pad_tok_in_ffn:
            try:
                from flash_attn.bert_padding import unpad_input, pad_input
            except:
                raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6')