File size: 7,927 Bytes
14fd0a4
bab6ea0
14fd0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5dabd
14fd0a4
c45ca0a
bab6ea0
14fd0a4
 
 
 
 
abe8dd5
14fd0a4
 
 
bab6ea0
14fd0a4
 
 
6ded0b7
14fd0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c45ca0a
14fd0a4
c45ca0a
 
 
 
 
 
 
 
 
14fd0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61b9ca
14fd0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
license: apache-2.0
datasets:
- competition_math
- knkarthick/dialogsum
- mosaicml/dolly_hhrlhf
- duorc
- emozilla/quality
- scrolls/summ_screen_fd
- spider
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---

# MPT-7B-Instruct-8k

MPT-7B-Instruct-8k is a model for long-form instruction following, especially question-answering on and summarization of longer documents.
It is built by finetuning [MPT-7B-8k](https://huggingface.co./mosaicml/mpt-7b-8k) on [Dolly HHRLHF](https://huggingface.co./datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co./datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co./datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co./datasets/competition_math), [Duorc](https://huggingface.co./datasets/duorc), [CoT GSM8k](https://huggingface.co./datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co./datasets/allenai/qasper), [Quality](https://huggingface.co./datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co./datasets/tau/scrolls) and [Spider](https://huggingface.co./datasets/spider).
This is the same dataset that [MPT-30B-Instruct](https://huggingface.co./mosaicml/mpt-30b-instruct) was trained on.
  * License: Apache 2.0

This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.

## Model Date

July 18, 2023

## Model License

Apache 2.0

## Documentation

* [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!

## How to Use

This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.

```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
  'mosaicml/mpt-7b-instruct-8k',
  trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.

To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers

name = 'mosaicml/mpt-7b-instruct-8k'

config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'  # change this to use triton-based FlashAttention
config.init_device = 'cuda:0' # For fast initialization directly on GPU!

model = transformers.AutoModelForCausalLM.from_pretrained(
  name,
  config=config,
  torch_dtype=torch.bfloat16, # Load model weights in bfloat16
  trust_remote_code=True
)
```

The model was trained initially with a sequence length of 2048 with an additional pretraining stage for sequence length adapation up to 8192. However, ALiBi enables users to increase the maximum sequence length even further during finetuning and/or inference. For example:

```python
import transformers

name = 'mosaicml/mpt-7b-instruct-8k'

config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384

model = transformers.AutoModelForCausalLM.from_pretrained(
  name,
  config=config,
  trust_remote_code=True
)
```

This model was trained with the MPT-7B-chat tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co./EleutherAI/gpt-neox-20b) tokenizer and includes additional ChatML tokens.

```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k')
```

The model can then be used, for example, within a text-generation pipeline.  
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).

```python
from transformers import pipeline

with torch.autocast('cuda', dtype=torch.bfloat16):
    inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
    outputs = model.generate(**inputs, max_new_tokens=100)
    print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
    print(
        pipe('Here is a recipe for vegan banana bread:\n',
            max_new_tokens=100,
            do_sample=True,
            use_cache=True))
```

## Model Description

The architecture is a modification of a standard decoder-only transformer.

The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases


| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |

## Data Mix

The model was trained on the following data mix:

| Data Source | Number of Tokens in Source | Proportion |
|-------------|----------------------------|------------|
| competition_math | 1.6 M | 3.66% |
| cot_gsm8k | 3.36 M | 7.67% |
| dialogsum | 0.1 M | 0.23% |
| dolly_hhrlhf | 5.89 M | 13.43% |
| duorc | 7.8 M | 17.80% |
| qasper | 8.72 M | 19.90% |
| quality | 11.29 M | 25.78% |
| scrolls/summ_screen_fd | 4.97 M | 11.33% |
| spider | 0.089 M | 0.20% |

### Training Configuration

This model was trained on 8 80GB A100s for about 6.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.

## Limitations and Biases

_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co./EleutherAI/gpt-neox-20b)_

MPT-7B-Instruct-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct-8k was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

## Acknowledgements

This model was finetuned by the MosaicML NLP team.

## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.


## MosaicML Platform

If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k).


## Citation

Please cite this model using the following format:

```
@online{MosaicML2023Introducing,
    author    = {MosaicML NLP Team},
    title     = {Introducing MPT-30B: Raising the bar
for open-source foundation models},
    year      = {2023},
    url       = {www.mosaicml.com/blog/mpt-30b},
    note      = {Accessed: 2023-06-22},
    urldate   = {2023-06-22}
}
```