from typing import Dict, Any import torch from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from PIL import Image import requests from io import BytesIO # Check for GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path: str = "morthens/qwen2-vl-inference"): # Load the processor and model self.processor = AutoProcessor.from_pretrained(path) self.model = Qwen2VLForConditionalGeneration.from_pretrained( path, torch_dtype="auto", device_map="auto" ) # Move the model to the appropriate device self.model.to(device) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # Extract the input data image_url = data.get("image_url", "") text = data.get("text", "") # Load the image from the URL try: response = requests.get(image_url) response.raise_for_status() image = Image.open(BytesIO(response.content)) except Exception as e: return {"error": f"Failed to fetch or process image: {str(e)}"} # Preprocess the input inputs = self.processor( text=[text], images=[image], padding=True, return_tensors="pt" ) # Move inputs to the correct device inputs = {key: value.to(device) for key, value in inputs.items()} # Perform inference output_ids = self.model.generate( **inputs, max_new_tokens=128 ) # Decode the output output_text = self.processor.batch_decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] # Return the raw prediction return {"prediction": output_text}