|
from typing import Dict, Any |
|
import torch |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = "morthens/qwen2-vl-inference"): |
|
|
|
self.processor = AutoProcessor.from_pretrained(path) |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
path, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
self.model.to(device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
|
|
image_url = data.get("image_url", "") |
|
text = data.get("text", "") |
|
|
|
|
|
try: |
|
response = requests.get(image_url) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)) |
|
except Exception as e: |
|
return {"error": f"Failed to fetch or process image: {str(e)}"} |
|
|
|
|
|
inputs = self.processor( |
|
text=[text], |
|
images=[image], |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
|
|
|
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
|
|
|
|
output_ids = self.model.generate( |
|
**inputs, |
|
max_new_tokens=128 |
|
) |
|
|
|
|
|
output_text = self.processor.batch_decode( |
|
output_ids, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True |
|
)[0] |
|
|
|
|
|
return {"prediction": output_text} |
|
|
|
|