moritzglnr commited on
Commit
aa21a77
1 Parent(s): 2bb2883

Add new SentenceTransformer model.

Browse files
Files changed (4) hide show
  1. README.md +223 -213
  2. config.json +1 -1
  3. config_sentence_transformers.json +2 -2
  4. model.safetensors +1 -1
README.md CHANGED
@@ -31,50 +31,48 @@ tags:
31
  - loss:MatryoshkaLoss
32
  - loss:MultipleNegativesRankingLoss
33
  widget:
34
- - source_sentence: R&D expense increased by $304 million, or 14.9%, led by Intelligent
35
- Edge, HPC & AI and Storage in fiscal 2023.
 
36
  sentences:
37
- - What was the growth rate of Visa Inc.'s overall total nominal volume from 2021
38
- to 2022?
39
- - How much did Hewlett Packard Enterprise's R&D expenses increase in fiscal 2023?
40
- - What is the purpose of the Global Day of Joy at Hasbro?
41
- - source_sentence: In 2022 and continuing into 2023, the Russia-Ukraine conflict was
42
- a catalyst for an energy crisis in Europe. Government interventions related to
43
- the energy crisis resulting from the Russia-Ukraine conflict, such as the Market
44
- Correction Mechanism (price cap), or interventions that may be proposed in the
45
- future related to the Russia-Ukraine conflict or the conflict in Israel and Gaza
46
- could also have a negative impact on our business.
47
  sentences:
48
- - What are Garmin's core strategies for reducing its environmental impact?
49
- - What are the potential consequences of the Russia-Ukraine conflict on a company's
50
- business?
51
- - What factors influence HP's critical accounting estimates?
52
- - source_sentence: The increase in other income, net was primarily due to an increase
53
- in interest income as a result of higher cash balances and higher interest rates.
 
54
  sentences:
55
- - What was the primary reason for the increase in other income, net during the noted
56
- period?
57
- - What led to the increase in room expenses at Las Vegas Sands Corp. in 2023?
58
- - What was the provision for income taxes for the year ended June 30, 2023?
59
- - source_sentence: When an investment declines below cost basis, management evaluates
60
- whether the decline in fair value is other than temporary. If deemed other than
61
- temporary, an impairment charge is recorded.
62
  sentences:
63
- - What are the requirements for Gilead's cell therapy products under the FDA's Risk
64
- Evaluation and Mitigation Strategy program?
65
- - What are the four focus areas declared by the company to strengthen their performance
66
- going forward?
67
- - What triggers the requirement for management to record an impairment charge for
68
- investments?
69
- - source_sentence: The total gross fair value of derivatives was listed as $422,232
70
- million as per the latest financial data without adjustments for counterparty
71
- netting or collateral.
72
  sentences:
73
- - What was the total gross fair value of derivatives as of December 2023 before
74
- netting adjustments in the consolidated financial statements?
75
- - How does the company handle the recording and disclosure of contingent liabilities?
76
- - What is the significance of reporting financial results on a constant currency
77
- basis?
78
  model-index:
79
  - name: BGE base Financial Matryoshka
80
  results:
@@ -86,49 +84,49 @@ model-index:
86
  type: dim_768
87
  metrics:
88
  - type: cosine_accuracy@1
89
- value: 0.7071428571428572
90
  name: Cosine Accuracy@1
91
  - type: cosine_accuracy@3
92
- value: 0.8214285714285714
93
  name: Cosine Accuracy@3
94
  - type: cosine_accuracy@5
95
- value: 0.8614285714285714
96
  name: Cosine Accuracy@5
97
  - type: cosine_accuracy@10
98
- value: 0.9042857142857142
99
  name: Cosine Accuracy@10
100
  - type: cosine_precision@1
101
- value: 0.7071428571428572
102
  name: Cosine Precision@1
103
  - type: cosine_precision@3
104
- value: 0.2738095238095238
105
  name: Cosine Precision@3
106
  - type: cosine_precision@5
107
- value: 0.17228571428571426
108
  name: Cosine Precision@5
109
  - type: cosine_precision@10
110
- value: 0.09042857142857141
111
  name: Cosine Precision@10
112
  - type: cosine_recall@1
113
- value: 0.7071428571428572
114
  name: Cosine Recall@1
115
  - type: cosine_recall@3
116
- value: 0.8214285714285714
117
  name: Cosine Recall@3
118
  - type: cosine_recall@5
119
- value: 0.8614285714285714
120
  name: Cosine Recall@5
121
  - type: cosine_recall@10
122
- value: 0.9042857142857142
123
  name: Cosine Recall@10
124
  - type: cosine_ndcg@10
125
- value: 0.8050065074948352
126
  name: Cosine Ndcg@10
127
  - type: cosine_mrr@10
128
- value: 0.7732902494331064
129
  name: Cosine Mrr@10
130
  - type: cosine_map@100
131
- value: 0.776990609765374
132
  name: Cosine Map@100
133
  - task:
134
  type: information-retrieval
@@ -138,49 +136,49 @@ model-index:
138
  type: dim_512
139
  metrics:
140
  - type: cosine_accuracy@1
141
- value: 0.7014285714285714
142
  name: Cosine Accuracy@1
143
  - type: cosine_accuracy@3
144
- value: 0.8214285714285714
145
  name: Cosine Accuracy@3
146
  - type: cosine_accuracy@5
147
- value: 0.8657142857142858
148
  name: Cosine Accuracy@5
149
  - type: cosine_accuracy@10
150
- value: 0.9057142857142857
151
  name: Cosine Accuracy@10
152
  - type: cosine_precision@1
153
- value: 0.7014285714285714
154
  name: Cosine Precision@1
155
  - type: cosine_precision@3
156
- value: 0.2738095238095238
157
  name: Cosine Precision@3
158
  - type: cosine_precision@5
159
- value: 0.17314285714285713
160
  name: Cosine Precision@5
161
  - type: cosine_precision@10
162
- value: 0.09057142857142855
163
  name: Cosine Precision@10
164
  - type: cosine_recall@1
165
- value: 0.7014285714285714
166
  name: Cosine Recall@1
167
  - type: cosine_recall@3
168
- value: 0.8214285714285714
169
  name: Cosine Recall@3
170
  - type: cosine_recall@5
171
- value: 0.8657142857142858
172
  name: Cosine Recall@5
173
  - type: cosine_recall@10
174
- value: 0.9057142857142857
175
  name: Cosine Recall@10
176
  - type: cosine_ndcg@10
177
- value: 0.8035496957871646
178
  name: Cosine Ndcg@10
179
  - type: cosine_mrr@10
180
- value: 0.7707964852607707
181
  name: Cosine Mrr@10
182
  - type: cosine_map@100
183
- value: 0.7744696266512991
184
  name: Cosine Map@100
185
  - task:
186
  type: information-retrieval
@@ -190,49 +188,49 @@ model-index:
190
  type: dim_256
191
  metrics:
192
  - type: cosine_accuracy@1
193
- value: 0.6885714285714286
194
  name: Cosine Accuracy@1
195
  - type: cosine_accuracy@3
196
- value: 0.8157142857142857
197
  name: Cosine Accuracy@3
198
  - type: cosine_accuracy@5
199
- value: 0.86
200
  name: Cosine Accuracy@5
201
  - type: cosine_accuracy@10
202
- value: 0.9014285714285715
203
  name: Cosine Accuracy@10
204
  - type: cosine_precision@1
205
- value: 0.6885714285714286
206
  name: Cosine Precision@1
207
  - type: cosine_precision@3
208
- value: 0.27190476190476187
209
  name: Cosine Precision@3
210
  - type: cosine_precision@5
211
- value: 0.172
212
  name: Cosine Precision@5
213
  - type: cosine_precision@10
214
- value: 0.09014285714285714
215
  name: Cosine Precision@10
216
  - type: cosine_recall@1
217
- value: 0.6885714285714286
218
  name: Cosine Recall@1
219
  - type: cosine_recall@3
220
- value: 0.8157142857142857
221
  name: Cosine Recall@3
222
  - type: cosine_recall@5
223
- value: 0.86
224
  name: Cosine Recall@5
225
  - type: cosine_recall@10
226
- value: 0.9014285714285715
227
  name: Cosine Recall@10
228
  - type: cosine_ndcg@10
229
- value: 0.7959304086509564
230
  name: Cosine Ndcg@10
231
  - type: cosine_mrr@10
232
- value: 0.7620759637188204
233
  name: Cosine Mrr@10
234
  - type: cosine_map@100
235
- value: 0.7656989001700307
236
  name: Cosine Map@100
237
  - task:
238
  type: information-retrieval
@@ -242,49 +240,49 @@ model-index:
242
  type: dim_128
243
  metrics:
244
  - type: cosine_accuracy@1
245
- value: 0.6871428571428572
246
  name: Cosine Accuracy@1
247
  - type: cosine_accuracy@3
248
- value: 0.7871428571428571
249
  name: Cosine Accuracy@3
250
  - type: cosine_accuracy@5
251
- value: 0.8257142857142857
252
  name: Cosine Accuracy@5
253
  - type: cosine_accuracy@10
254
- value: 0.8828571428571429
255
  name: Cosine Accuracy@10
256
  - type: cosine_precision@1
257
- value: 0.6871428571428572
258
  name: Cosine Precision@1
259
  - type: cosine_precision@3
260
- value: 0.2623809523809524
261
  name: Cosine Precision@3
262
  - type: cosine_precision@5
263
- value: 0.16514285714285712
264
  name: Cosine Precision@5
265
  - type: cosine_precision@10
266
- value: 0.08828571428571427
267
  name: Cosine Precision@10
268
  - type: cosine_recall@1
269
- value: 0.6871428571428572
270
  name: Cosine Recall@1
271
  - type: cosine_recall@3
272
- value: 0.7871428571428571
273
  name: Cosine Recall@3
274
  - type: cosine_recall@5
275
- value: 0.8257142857142857
276
  name: Cosine Recall@5
277
  - type: cosine_recall@10
278
- value: 0.8828571428571429
279
  name: Cosine Recall@10
280
  - type: cosine_ndcg@10
281
- value: 0.7805054661054854
282
  name: Cosine Ndcg@10
283
  - type: cosine_mrr@10
284
- value: 0.7483526077097503
285
  name: Cosine Mrr@10
286
  - type: cosine_map@100
287
- value: 0.7524860233992903
288
  name: Cosine Map@100
289
  - task:
290
  type: information-retrieval
@@ -294,49 +292,49 @@ model-index:
294
  type: dim_64
295
  metrics:
296
  - type: cosine_accuracy@1
297
- value: 0.64
298
  name: Cosine Accuracy@1
299
  - type: cosine_accuracy@3
300
- value: 0.7557142857142857
301
  name: Cosine Accuracy@3
302
  - type: cosine_accuracy@5
303
- value: 0.7828571428571428
304
  name: Cosine Accuracy@5
305
  - type: cosine_accuracy@10
306
- value: 0.8428571428571429
307
  name: Cosine Accuracy@10
308
  - type: cosine_precision@1
309
- value: 0.64
310
  name: Cosine Precision@1
311
  - type: cosine_precision@3
312
- value: 0.25190476190476185
313
  name: Cosine Precision@3
314
  - type: cosine_precision@5
315
- value: 0.15657142857142856
316
  name: Cosine Precision@5
317
  - type: cosine_precision@10
318
- value: 0.08428571428571427
319
  name: Cosine Precision@10
320
  - type: cosine_recall@1
321
- value: 0.64
322
  name: Cosine Recall@1
323
  - type: cosine_recall@3
324
- value: 0.7557142857142857
325
  name: Cosine Recall@3
326
  - type: cosine_recall@5
327
- value: 0.7828571428571428
328
  name: Cosine Recall@5
329
  - type: cosine_recall@10
330
- value: 0.8428571428571429
331
  name: Cosine Recall@10
332
  - type: cosine_ndcg@10
333
- value: 0.7386047605712329
334
  name: Cosine Ndcg@10
335
  - type: cosine_mrr@10
336
- value: 0.7057772108843535
337
  name: Cosine Mrr@10
338
  - type: cosine_map@100
339
- value: 0.7112870933540941
340
  name: Cosine Map@100
341
  ---
342
 
@@ -390,9 +388,9 @@ from sentence_transformers import SentenceTransformer
390
  model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
391
  # Run inference
392
  sentences = [
393
- 'The total gross fair value of derivatives was listed as $422,232 million as per the latest financial data without adjustments for counterparty netting or collateral.',
394
- 'What was the total gross fair value of derivatives as of December 2023 before netting adjustments in the consolidated financial statements?',
395
- 'How does the company handle the recording and disclosure of contingent liabilities?',
396
  ]
397
  embeddings = model.encode(sentences)
398
  print(embeddings.shape)
@@ -436,67 +434,67 @@ You can finetune this model on your own dataset.
436
  * Dataset: `dim_768`
437
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
438
 
439
- | Metric | Value |
440
- |:--------------------|:----------|
441
- | cosine_accuracy@1 | 0.7071 |
442
- | cosine_accuracy@3 | 0.8214 |
443
- | cosine_accuracy@5 | 0.8614 |
444
- | cosine_accuracy@10 | 0.9043 |
445
- | cosine_precision@1 | 0.7071 |
446
- | cosine_precision@3 | 0.2738 |
447
- | cosine_precision@5 | 0.1723 |
448
- | cosine_precision@10 | 0.0904 |
449
- | cosine_recall@1 | 0.7071 |
450
- | cosine_recall@3 | 0.8214 |
451
- | cosine_recall@5 | 0.8614 |
452
- | cosine_recall@10 | 0.9043 |
453
- | cosine_ndcg@10 | 0.805 |
454
- | cosine_mrr@10 | 0.7733 |
455
- | **cosine_map@100** | **0.777** |
456
-
457
- #### Information Retrieval
458
- * Dataset: `dim_512`
459
- * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
460
-
461
  | Metric | Value |
462
  |:--------------------|:-----------|
463
- | cosine_accuracy@1 | 0.7014 |
464
- | cosine_accuracy@3 | 0.8214 |
465
- | cosine_accuracy@5 | 0.8657 |
466
  | cosine_accuracy@10 | 0.9057 |
467
- | cosine_precision@1 | 0.7014 |
468
- | cosine_precision@3 | 0.2738 |
469
- | cosine_precision@5 | 0.1731 |
470
  | cosine_precision@10 | 0.0906 |
471
- | cosine_recall@1 | 0.7014 |
472
- | cosine_recall@3 | 0.8214 |
473
- | cosine_recall@5 | 0.8657 |
474
  | cosine_recall@10 | 0.9057 |
475
- | cosine_ndcg@10 | 0.8035 |
476
- | cosine_mrr@10 | 0.7708 |
477
- | **cosine_map@100** | **0.7745** |
478
 
479
  #### Information Retrieval
480
- * Dataset: `dim_256`
481
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
482
 
483
  | Metric | Value |
484
  |:--------------------|:-----------|
485
- | cosine_accuracy@1 | 0.6886 |
486
  | cosine_accuracy@3 | 0.8157 |
487
- | cosine_accuracy@5 | 0.86 |
488
- | cosine_accuracy@10 | 0.9014 |
489
- | cosine_precision@1 | 0.6886 |
490
  | cosine_precision@3 | 0.2719 |
491
- | cosine_precision@5 | 0.172 |
492
- | cosine_precision@10 | 0.0901 |
493
- | cosine_recall@1 | 0.6886 |
494
  | cosine_recall@3 | 0.8157 |
495
- | cosine_recall@5 | 0.86 |
496
- | cosine_recall@10 | 0.9014 |
497
- | cosine_ndcg@10 | 0.7959 |
498
- | cosine_mrr@10 | 0.7621 |
499
- | **cosine_map@100** | **0.7657** |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500
 
501
  #### Information Retrieval
502
  * Dataset: `dim_128`
@@ -504,21 +502,21 @@ You can finetune this model on your own dataset.
504
 
505
  | Metric | Value |
506
  |:--------------------|:-----------|
507
- | cosine_accuracy@1 | 0.6871 |
508
- | cosine_accuracy@3 | 0.7871 |
509
- | cosine_accuracy@5 | 0.8257 |
510
- | cosine_accuracy@10 | 0.8829 |
511
- | cosine_precision@1 | 0.6871 |
512
- | cosine_precision@3 | 0.2624 |
513
- | cosine_precision@5 | 0.1651 |
514
- | cosine_precision@10 | 0.0883 |
515
- | cosine_recall@1 | 0.6871 |
516
- | cosine_recall@3 | 0.7871 |
517
- | cosine_recall@5 | 0.8257 |
518
- | cosine_recall@10 | 0.8829 |
519
- | cosine_ndcg@10 | 0.7805 |
520
- | cosine_mrr@10 | 0.7484 |
521
- | **cosine_map@100** | **0.7525** |
522
 
523
  #### Information Retrieval
524
  * Dataset: `dim_64`
@@ -526,21 +524,21 @@ You can finetune this model on your own dataset.
526
 
527
  | Metric | Value |
528
  |:--------------------|:-----------|
529
- | cosine_accuracy@1 | 0.64 |
530
- | cosine_accuracy@3 | 0.7557 |
531
- | cosine_accuracy@5 | 0.7829 |
532
- | cosine_accuracy@10 | 0.8429 |
533
- | cosine_precision@1 | 0.64 |
534
- | cosine_precision@3 | 0.2519 |
535
- | cosine_precision@5 | 0.1566 |
536
- | cosine_precision@10 | 0.0843 |
537
- | cosine_recall@1 | 0.64 |
538
- | cosine_recall@3 | 0.7557 |
539
- | cosine_recall@5 | 0.7829 |
540
- | cosine_recall@10 | 0.8429 |
541
- | cosine_ndcg@10 | 0.7386 |
542
- | cosine_mrr@10 | 0.7058 |
543
- | **cosine_map@100** | **0.7113** |
544
 
545
  <!--
546
  ## Bias, Risks and Limitations
@@ -567,13 +565,13 @@ You can finetune this model on your own dataset.
567
  | | positive | anchor |
568
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
569
  | type | string | string |
570
- | details | <ul><li>min: 2 tokens</li><li>mean: 45.41 tokens</li><li>max: 371 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.32 tokens</li><li>max: 51 tokens</li></ul> |
571
  * Samples:
572
- | positive | anchor |
573
- |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
574
- | <code>The 2023 Form 10-K for Delta Air Lines, Inc. includes various types of financial statements such as consolidated balance sheets, consolidated statements of operations, comprehensive income, cash flows, and stockholders' equity.</code> | <code>What are the primary types of financial statements included in Delta Air Lines, Inc.'s 2023 Form 10-K?</code> |
575
- | <code>Critical accounting estimates are those that involve a significant level of estimation uncertainty and have had or are reasonably likely to have a material impact on HP's financial condition or results of operations.</code> | <code>What factors influence HP's critical accounting estimates?</code> |
576
- | <code>The requisite service period for both employee stock options and RSUs is generally four years from the grant date.</code> | <code>What is the recognition period for Etsy's stock options and RSUs granted to employees?</code> |
577
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
578
  ```json
579
  {
@@ -599,15 +597,18 @@ You can finetune this model on your own dataset.
599
  ### Training Hyperparameters
600
  #### Non-Default Hyperparameters
601
 
 
602
  - `per_device_train_batch_size`: 32
603
  - `per_device_eval_batch_size`: 16
604
  - `gradient_accumulation_steps`: 16
605
  - `learning_rate`: 2e-05
606
- - `num_train_epochs`: 1
607
  - `lr_scheduler_type`: cosine
608
  - `warmup_ratio`: 0.1
609
- - `tf32`: False
 
610
  - `load_best_model_at_end`: True
 
611
  - `batch_sampler`: no_duplicates
612
 
613
  #### All Hyperparameters
@@ -615,6 +616,7 @@ You can finetune this model on your own dataset.
615
 
616
  - `overwrite_output_dir`: False
617
  - `do_predict`: False
 
618
  - `prediction_loss_only`: True
619
  - `per_device_train_batch_size`: 32
620
  - `per_device_eval_batch_size`: 16
@@ -628,7 +630,7 @@ You can finetune this model on your own dataset.
628
  - `adam_beta2`: 0.999
629
  - `adam_epsilon`: 1e-08
630
  - `max_grad_norm`: 1.0
631
- - `num_train_epochs`: 1
632
  - `max_steps`: -1
633
  - `lr_scheduler_type`: cosine
634
  - `lr_scheduler_kwargs`: {}
@@ -641,6 +643,7 @@ You can finetune this model on your own dataset.
641
  - `save_safetensors`: True
642
  - `save_on_each_node`: False
643
  - `save_only_model`: False
 
644
  - `no_cuda`: False
645
  - `use_cpu`: False
646
  - `use_mps_device`: False
@@ -648,13 +651,13 @@ You can finetune this model on your own dataset.
648
  - `data_seed`: None
649
  - `jit_mode_eval`: False
650
  - `use_ipex`: False
651
- - `bf16`: False
652
  - `fp16`: False
653
  - `fp16_opt_level`: O1
654
  - `half_precision_backend`: auto
655
  - `bf16_full_eval`: False
656
  - `fp16_full_eval`: False
657
- - `tf32`: False
658
  - `local_rank`: 0
659
  - `ddp_backend`: None
660
  - `tpu_num_cores`: None
@@ -673,10 +676,10 @@ You can finetune this model on your own dataset.
673
  - `fsdp_min_num_params`: 0
674
  - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
675
  - `fsdp_transformer_layer_cls_to_wrap`: None
676
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
677
  - `deepspeed`: None
678
  - `label_smoothing_factor`: 0.0
679
- - `optim`: adamw_torch
680
  - `optim_args`: None
681
  - `adafactor`: False
682
  - `group_by_length`: False
@@ -716,6 +719,7 @@ You can finetune this model on your own dataset.
716
  - `include_num_input_tokens_seen`: False
717
  - `neftune_noise_alpha`: None
718
  - `optim_target_modules`: None
 
719
  - `batch_sampler`: no_duplicates
720
  - `multi_dataset_batch_sampler`: proportional
721
 
@@ -724,18 +728,24 @@ You can finetune this model on your own dataset.
724
  ### Training Logs
725
  | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
726
  |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
727
- | 0.8122 | 10 | 1.4747 | - | - | - | - | - |
728
- | **0.9746** | **12** | **-** | **0.7525** | **0.7657** | **0.7745** | **0.7113** | **0.777** |
 
 
 
 
 
 
729
 
730
  * The bold row denotes the saved checkpoint.
731
 
732
  ### Framework Versions
733
- - Python: 3.11.9
734
  - Sentence Transformers: 3.0.1
735
- - Transformers: 4.40.2
736
- - PyTorch: 2.3.1
737
  - Accelerate: 0.32.1
738
- - Datasets: 2.20.0
739
  - Tokenizers: 0.19.1
740
 
741
  ## Citation
 
31
  - loss:MatryoshkaLoss
32
  - loss:MultipleNegativesRankingLoss
33
  widget:
34
+ - source_sentence: The table indicates that 18,000 deferred shares were granted to
35
+ non-employee directors in fiscal 2020, 15,000 in fiscal 2021, and 19,000 in fiscal
36
+ 2022.
37
  sentences:
38
+ - What was the primary reason for the increased audit effort for PCC goodwill and
39
+ indefinite-lived intangible assets?
40
+ - How many deferred shares were granted to non-employee directors in fiscal 2020,
41
+ 2021, and 2022?
42
+ - What was the total intrinsic value of options exercised in fiscal year 2023?
43
+ - source_sentence: In Resource Masking Industries, we expect the profit impact from
44
+ lower sales volume to be partially offset by favorable price realization.
 
 
 
45
  sentences:
46
+ - By what percentage did Electronic Arts' operating income grow in the fiscal year
47
+ ended March 31, 2023?
48
+ - What impact is expected on Resource Industries' profit due to lower sales volume?
49
+ - How are IBM’s 2023 Annual Report to Stockholders' financial statements made a
50
+ part of Form 10-K?
51
+ - source_sentence: The actuarial gain during the year ended December 31, 2022 was
52
+ primarily related to increases in the discount rate assumptions.
53
  sentences:
54
+ - What was the primary reason for the actuarial gain during the year ended December
55
+ 31, 2022?
56
+ - How much did Ford's total assets amount to by December 31, 2023?
57
+ - What was the remaining available amount of the share repurchase authorization
58
+ as of January 29, 2023?
59
+ - source_sentence: Returned $1.7 billion to shareholders through share repurchases
60
+ and dividend payments.
61
  sentences:
62
+ - What was the carrying amount of investments without readily determinable fair
63
+ values as of December 31, 2023?
64
+ - What are the significant inputs to the valuation of Goldman Sachs' unsecured short-
65
+ and long-term borrowings?
66
+ - How much did the company return to shareholders through share repurchases and
67
+ dividend payments in 2022?
68
+ - source_sentence: The remaining amount available for borrowing under the Revolving
69
+ Credit Facility as of December 31, 2023, was $2,245.2 million.
 
70
  sentences:
71
+ - What was the total amount available for borrowing under the Revolving Credit Facility
72
+ at Iron Mountain as of December 31, 2023?
73
+ - What type of information is included in Note 13 of the Annual Report on Form 10-K?
74
+ - How much did local currency revenue increase in Latin America in 2023 compared
75
+ to 2022?
76
  model-index:
77
  - name: BGE base Financial Matryoshka
78
  results:
 
84
  type: dim_768
85
  metrics:
86
  - type: cosine_accuracy@1
87
+ value: 0.6828571428571428
88
  name: Cosine Accuracy@1
89
  - type: cosine_accuracy@3
90
+ value: 0.8242857142857143
91
  name: Cosine Accuracy@3
92
  - type: cosine_accuracy@5
93
+ value: 0.8557142857142858
94
  name: Cosine Accuracy@5
95
  - type: cosine_accuracy@10
96
+ value: 0.9057142857142857
97
  name: Cosine Accuracy@10
98
  - type: cosine_precision@1
99
+ value: 0.6828571428571428
100
  name: Cosine Precision@1
101
  - type: cosine_precision@3
102
+ value: 0.2747619047619047
103
  name: Cosine Precision@3
104
  - type: cosine_precision@5
105
+ value: 0.17114285714285712
106
  name: Cosine Precision@5
107
  - type: cosine_precision@10
108
+ value: 0.09057142857142855
109
  name: Cosine Precision@10
110
  - type: cosine_recall@1
111
+ value: 0.6828571428571428
112
  name: Cosine Recall@1
113
  - type: cosine_recall@3
114
+ value: 0.8242857142857143
115
  name: Cosine Recall@3
116
  - type: cosine_recall@5
117
+ value: 0.8557142857142858
118
  name: Cosine Recall@5
119
  - type: cosine_recall@10
120
+ value: 0.9057142857142857
121
  name: Cosine Recall@10
122
  - type: cosine_ndcg@10
123
+ value: 0.7963610970343802
124
  name: Cosine Ndcg@10
125
  - type: cosine_mrr@10
126
+ value: 0.7612930839002267
127
  name: Cosine Mrr@10
128
  - type: cosine_map@100
129
+ value: 0.7648513048205645
130
  name: Cosine Map@100
131
  - task:
132
  type: information-retrieval
 
136
  type: dim_512
137
  metrics:
138
  - type: cosine_accuracy@1
139
+ value: 0.68
140
  name: Cosine Accuracy@1
141
  - type: cosine_accuracy@3
142
+ value: 0.8157142857142857
143
  name: Cosine Accuracy@3
144
  - type: cosine_accuracy@5
145
+ value: 0.8542857142857143
146
  name: Cosine Accuracy@5
147
  - type: cosine_accuracy@10
148
+ value: 0.9
149
  name: Cosine Accuracy@10
150
  - type: cosine_precision@1
151
+ value: 0.68
152
  name: Cosine Precision@1
153
  - type: cosine_precision@3
154
+ value: 0.27190476190476187
155
  name: Cosine Precision@3
156
  - type: cosine_precision@5
157
+ value: 0.17085714285714285
158
  name: Cosine Precision@5
159
  - type: cosine_precision@10
160
+ value: 0.09
161
  name: Cosine Precision@10
162
  - type: cosine_recall@1
163
+ value: 0.68
164
  name: Cosine Recall@1
165
  - type: cosine_recall@3
166
+ value: 0.8157142857142857
167
  name: Cosine Recall@3
168
  - type: cosine_recall@5
169
+ value: 0.8542857142857143
170
  name: Cosine Recall@5
171
  - type: cosine_recall@10
172
+ value: 0.9
173
  name: Cosine Recall@10
174
  - type: cosine_ndcg@10
175
+ value: 0.7911616934987842
176
  name: Cosine Ndcg@10
177
  - type: cosine_mrr@10
178
+ value: 0.7562284580498863
179
  name: Cosine Mrr@10
180
  - type: cosine_map@100
181
+ value: 0.760087172570928
182
  name: Cosine Map@100
183
  - task:
184
  type: information-retrieval
 
188
  type: dim_256
189
  metrics:
190
  - type: cosine_accuracy@1
191
+ value: 0.68
192
  name: Cosine Accuracy@1
193
  - type: cosine_accuracy@3
194
+ value: 0.8114285714285714
195
  name: Cosine Accuracy@3
196
  - type: cosine_accuracy@5
197
+ value: 0.8485714285714285
198
  name: Cosine Accuracy@5
199
  - type: cosine_accuracy@10
200
+ value: 0.8971428571428571
201
  name: Cosine Accuracy@10
202
  - type: cosine_precision@1
203
+ value: 0.68
204
  name: Cosine Precision@1
205
  - type: cosine_precision@3
206
+ value: 0.2704761904761905
207
  name: Cosine Precision@3
208
  - type: cosine_precision@5
209
+ value: 0.16971428571428568
210
  name: Cosine Precision@5
211
  - type: cosine_precision@10
212
+ value: 0.0897142857142857
213
  name: Cosine Precision@10
214
  - type: cosine_recall@1
215
+ value: 0.68
216
  name: Cosine Recall@1
217
  - type: cosine_recall@3
218
+ value: 0.8114285714285714
219
  name: Cosine Recall@3
220
  - type: cosine_recall@5
221
+ value: 0.8485714285714285
222
  name: Cosine Recall@5
223
  - type: cosine_recall@10
224
+ value: 0.8971428571428571
225
  name: Cosine Recall@10
226
  - type: cosine_ndcg@10
227
+ value: 0.7888581850866868
228
  name: Cosine Ndcg@10
229
  - type: cosine_mrr@10
230
+ value: 0.7542278911564625
231
  name: Cosine Mrr@10
232
  - type: cosine_map@100
233
+ value: 0.7579536807505182
234
  name: Cosine Map@100
235
  - task:
236
  type: information-retrieval
 
240
  type: dim_128
241
  metrics:
242
  - type: cosine_accuracy@1
243
+ value: 0.6571428571428571
244
  name: Cosine Accuracy@1
245
  - type: cosine_accuracy@3
246
+ value: 0.79
247
  name: Cosine Accuracy@3
248
  - type: cosine_accuracy@5
249
+ value: 0.8285714285714286
250
  name: Cosine Accuracy@5
251
  - type: cosine_accuracy@10
252
+ value: 0.8857142857142857
253
  name: Cosine Accuracy@10
254
  - type: cosine_precision@1
255
+ value: 0.6571428571428571
256
  name: Cosine Precision@1
257
  - type: cosine_precision@3
258
+ value: 0.2633333333333333
259
  name: Cosine Precision@3
260
  - type: cosine_precision@5
261
+ value: 0.1657142857142857
262
  name: Cosine Precision@5
263
  - type: cosine_precision@10
264
+ value: 0.08857142857142856
265
  name: Cosine Precision@10
266
  - type: cosine_recall@1
267
+ value: 0.6571428571428571
268
  name: Cosine Recall@1
269
  - type: cosine_recall@3
270
+ value: 0.79
271
  name: Cosine Recall@3
272
  - type: cosine_recall@5
273
+ value: 0.8285714285714286
274
  name: Cosine Recall@5
275
  - type: cosine_recall@10
276
+ value: 0.8857142857142857
277
  name: Cosine Recall@10
278
  - type: cosine_ndcg@10
279
+ value: 0.7703812626851927
280
  name: Cosine Ndcg@10
281
  - type: cosine_mrr@10
282
+ value: 0.733632653061224
283
  name: Cosine Mrr@10
284
  - type: cosine_map@100
285
+ value: 0.7378840513025602
286
  name: Cosine Map@100
287
  - task:
288
  type: information-retrieval
 
292
  type: dim_64
293
  metrics:
294
  - type: cosine_accuracy@1
295
+ value: 0.62
296
  name: Cosine Accuracy@1
297
  - type: cosine_accuracy@3
298
+ value: 0.77
299
  name: Cosine Accuracy@3
300
  - type: cosine_accuracy@5
301
+ value: 0.8028571428571428
302
  name: Cosine Accuracy@5
303
  - type: cosine_accuracy@10
304
+ value: 0.85
305
  name: Cosine Accuracy@10
306
  - type: cosine_precision@1
307
+ value: 0.62
308
  name: Cosine Precision@1
309
  - type: cosine_precision@3
310
+ value: 0.25666666666666665
311
  name: Cosine Precision@3
312
  - type: cosine_precision@5
313
+ value: 0.16057142857142856
314
  name: Cosine Precision@5
315
  - type: cosine_precision@10
316
+ value: 0.085
317
  name: Cosine Precision@10
318
  - type: cosine_recall@1
319
+ value: 0.62
320
  name: Cosine Recall@1
321
  - type: cosine_recall@3
322
+ value: 0.77
323
  name: Cosine Recall@3
324
  - type: cosine_recall@5
325
+ value: 0.8028571428571428
326
  name: Cosine Recall@5
327
  - type: cosine_recall@10
328
+ value: 0.85
329
  name: Cosine Recall@10
330
  - type: cosine_ndcg@10
331
+ value: 0.73777886683529
332
  name: Cosine Ndcg@10
333
  - type: cosine_mrr@10
334
+ value: 0.7016190476190474
335
  name: Cosine Mrr@10
336
  - type: cosine_map@100
337
+ value: 0.7073607864232172
338
  name: Cosine Map@100
339
  ---
340
 
 
388
  model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
389
  # Run inference
390
  sentences = [
391
+ 'The remaining amount available for borrowing under the Revolving Credit Facility as of December 31, 2023, was $2,245.2 million.',
392
+ 'What was the total amount available for borrowing under the Revolving Credit Facility at Iron Mountain as of December 31, 2023?',
393
+ 'What type of information is included in Note 13 of the Annual Report on Form 10-K?',
394
  ]
395
  embeddings = model.encode(sentences)
396
  print(embeddings.shape)
 
434
  * Dataset: `dim_768`
435
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
  | Metric | Value |
438
  |:--------------------|:-----------|
439
+ | cosine_accuracy@1 | 0.6829 |
440
+ | cosine_accuracy@3 | 0.8243 |
441
+ | cosine_accuracy@5 | 0.8557 |
442
  | cosine_accuracy@10 | 0.9057 |
443
+ | cosine_precision@1 | 0.6829 |
444
+ | cosine_precision@3 | 0.2748 |
445
+ | cosine_precision@5 | 0.1711 |
446
  | cosine_precision@10 | 0.0906 |
447
+ | cosine_recall@1 | 0.6829 |
448
+ | cosine_recall@3 | 0.8243 |
449
+ | cosine_recall@5 | 0.8557 |
450
  | cosine_recall@10 | 0.9057 |
451
+ | cosine_ndcg@10 | 0.7964 |
452
+ | cosine_mrr@10 | 0.7613 |
453
+ | **cosine_map@100** | **0.7649** |
454
 
455
  #### Information Retrieval
456
+ * Dataset: `dim_512`
457
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
458
 
459
  | Metric | Value |
460
  |:--------------------|:-----------|
461
+ | cosine_accuracy@1 | 0.68 |
462
  | cosine_accuracy@3 | 0.8157 |
463
+ | cosine_accuracy@5 | 0.8543 |
464
+ | cosine_accuracy@10 | 0.9 |
465
+ | cosine_precision@1 | 0.68 |
466
  | cosine_precision@3 | 0.2719 |
467
+ | cosine_precision@5 | 0.1709 |
468
+ | cosine_precision@10 | 0.09 |
469
+ | cosine_recall@1 | 0.68 |
470
  | cosine_recall@3 | 0.8157 |
471
+ | cosine_recall@5 | 0.8543 |
472
+ | cosine_recall@10 | 0.9 |
473
+ | cosine_ndcg@10 | 0.7912 |
474
+ | cosine_mrr@10 | 0.7562 |
475
+ | **cosine_map@100** | **0.7601** |
476
+
477
+ #### Information Retrieval
478
+ * Dataset: `dim_256`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | Value |
482
+ |:--------------------|:----------|
483
+ | cosine_accuracy@1 | 0.68 |
484
+ | cosine_accuracy@3 | 0.8114 |
485
+ | cosine_accuracy@5 | 0.8486 |
486
+ | cosine_accuracy@10 | 0.8971 |
487
+ | cosine_precision@1 | 0.68 |
488
+ | cosine_precision@3 | 0.2705 |
489
+ | cosine_precision@5 | 0.1697 |
490
+ | cosine_precision@10 | 0.0897 |
491
+ | cosine_recall@1 | 0.68 |
492
+ | cosine_recall@3 | 0.8114 |
493
+ | cosine_recall@5 | 0.8486 |
494
+ | cosine_recall@10 | 0.8971 |
495
+ | cosine_ndcg@10 | 0.7889 |
496
+ | cosine_mrr@10 | 0.7542 |
497
+ | **cosine_map@100** | **0.758** |
498
 
499
  #### Information Retrieval
500
  * Dataset: `dim_128`
 
502
 
503
  | Metric | Value |
504
  |:--------------------|:-----------|
505
+ | cosine_accuracy@1 | 0.6571 |
506
+ | cosine_accuracy@3 | 0.79 |
507
+ | cosine_accuracy@5 | 0.8286 |
508
+ | cosine_accuracy@10 | 0.8857 |
509
+ | cosine_precision@1 | 0.6571 |
510
+ | cosine_precision@3 | 0.2633 |
511
+ | cosine_precision@5 | 0.1657 |
512
+ | cosine_precision@10 | 0.0886 |
513
+ | cosine_recall@1 | 0.6571 |
514
+ | cosine_recall@3 | 0.79 |
515
+ | cosine_recall@5 | 0.8286 |
516
+ | cosine_recall@10 | 0.8857 |
517
+ | cosine_ndcg@10 | 0.7704 |
518
+ | cosine_mrr@10 | 0.7336 |
519
+ | **cosine_map@100** | **0.7379** |
520
 
521
  #### Information Retrieval
522
  * Dataset: `dim_64`
 
524
 
525
  | Metric | Value |
526
  |:--------------------|:-----------|
527
+ | cosine_accuracy@1 | 0.62 |
528
+ | cosine_accuracy@3 | 0.77 |
529
+ | cosine_accuracy@5 | 0.8029 |
530
+ | cosine_accuracy@10 | 0.85 |
531
+ | cosine_precision@1 | 0.62 |
532
+ | cosine_precision@3 | 0.2567 |
533
+ | cosine_precision@5 | 0.1606 |
534
+ | cosine_precision@10 | 0.085 |
535
+ | cosine_recall@1 | 0.62 |
536
+ | cosine_recall@3 | 0.77 |
537
+ | cosine_recall@5 | 0.8029 |
538
+ | cosine_recall@10 | 0.85 |
539
+ | cosine_ndcg@10 | 0.7378 |
540
+ | cosine_mrr@10 | 0.7016 |
541
+ | **cosine_map@100** | **0.7074** |
542
 
543
  <!--
544
  ## Bias, Risks and Limitations
 
565
  | | positive | anchor |
566
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
567
  | type | string | string |
568
+ | details | <ul><li>min: 2 tokens</li><li>mean: 46.27 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.87 tokens</li><li>max: 51 tokens</li></ul> |
569
  * Samples:
570
+ | positive | anchor |
571
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
572
+ | <code>We utilize a full yield curve approach in the estimation of service and interest costs by applying the specific spot rates along the yield curve used in the determination of the benefit obligation to the relevant projected cash flows. This approach provides a more precise measurement of service and interest costs by improving the correlation between the projected cash flows to the corresponding spot rates along the yield curve. This approach does not affect the measurement of our pension and other post-retirement benefit liabilities but generally results in lower benefit expense in periods when the yield curve is upward sloping.</code> | <code>How does the use of a full yield curve approach in estimating pension costs affect the measurement of liabilities and expenses?</code> |
573
+ | <code>Ending | 8,134 | | 8,206 | | 16,340 | | 8,061 | | 8,016 | 16,077</code> | <code>What was the ending store count for the Family Dollar segment after the fiscal year ended January 28, 2023?</code> |
574
+ | <code>The company's capital expenditures for 2024 are expected to be approximately $5.7 billion.</code> | <code>How much does the company expect to spend on capital expenditures in 2024?</code> |
575
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
576
  ```json
577
  {
 
597
  ### Training Hyperparameters
598
  #### Non-Default Hyperparameters
599
 
600
+ - `eval_strategy`: epoch
601
  - `per_device_train_batch_size`: 32
602
  - `per_device_eval_batch_size`: 16
603
  - `gradient_accumulation_steps`: 16
604
  - `learning_rate`: 2e-05
605
+ - `num_train_epochs`: 4
606
  - `lr_scheduler_type`: cosine
607
  - `warmup_ratio`: 0.1
608
+ - `bf16`: True
609
+ - `tf32`: True
610
  - `load_best_model_at_end`: True
611
+ - `optim`: adamw_torch_fused
612
  - `batch_sampler`: no_duplicates
613
 
614
  #### All Hyperparameters
 
616
 
617
  - `overwrite_output_dir`: False
618
  - `do_predict`: False
619
+ - `eval_strategy`: epoch
620
  - `prediction_loss_only`: True
621
  - `per_device_train_batch_size`: 32
622
  - `per_device_eval_batch_size`: 16
 
630
  - `adam_beta2`: 0.999
631
  - `adam_epsilon`: 1e-08
632
  - `max_grad_norm`: 1.0
633
+ - `num_train_epochs`: 4
634
  - `max_steps`: -1
635
  - `lr_scheduler_type`: cosine
636
  - `lr_scheduler_kwargs`: {}
 
643
  - `save_safetensors`: True
644
  - `save_on_each_node`: False
645
  - `save_only_model`: False
646
+ - `restore_callback_states_from_checkpoint`: False
647
  - `no_cuda`: False
648
  - `use_cpu`: False
649
  - `use_mps_device`: False
 
651
  - `data_seed`: None
652
  - `jit_mode_eval`: False
653
  - `use_ipex`: False
654
+ - `bf16`: True
655
  - `fp16`: False
656
  - `fp16_opt_level`: O1
657
  - `half_precision_backend`: auto
658
  - `bf16_full_eval`: False
659
  - `fp16_full_eval`: False
660
+ - `tf32`: True
661
  - `local_rank`: 0
662
  - `ddp_backend`: None
663
  - `tpu_num_cores`: None
 
676
  - `fsdp_min_num_params`: 0
677
  - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
678
  - `fsdp_transformer_layer_cls_to_wrap`: None
679
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
680
  - `deepspeed`: None
681
  - `label_smoothing_factor`: 0.0
682
+ - `optim`: adamw_torch_fused
683
  - `optim_args`: None
684
  - `adafactor`: False
685
  - `group_by_length`: False
 
719
  - `include_num_input_tokens_seen`: False
720
  - `neftune_noise_alpha`: None
721
  - `optim_target_modules`: None
722
+ - `batch_eval_metrics`: False
723
  - `batch_sampler`: no_duplicates
724
  - `multi_dataset_batch_sampler`: proportional
725
 
 
728
  ### Training Logs
729
  | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
730
  |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
731
+ | 0.8122 | 10 | 1.5661 | - | - | - | - | - |
732
+ | 0.9746 | 12 | - | 0.7151 | 0.7378 | 0.7443 | 0.6680 | 0.7546 |
733
+ | 1.6244 | 20 | 0.6602 | - | - | - | - | - |
734
+ | 1.9492 | 24 | - | 0.7326 | 0.7533 | 0.7564 | 0.7037 | 0.7640 |
735
+ | 2.4365 | 30 | 0.4675 | - | - | - | - | - |
736
+ | 2.9239 | 36 | - | 0.7384 | 0.7575 | 0.7601 | 0.7086 | 0.7643 |
737
+ | 3.2487 | 40 | 0.3891 | - | - | - | - | - |
738
+ | **3.8985** | **48** | **-** | **0.7379** | **0.758** | **0.7601** | **0.7074** | **0.7649** |
739
 
740
  * The bold row denotes the saved checkpoint.
741
 
742
  ### Framework Versions
743
+ - Python: 3.10.12
744
  - Sentence Transformers: 3.0.1
745
+ - Transformers: 4.41.2
746
+ - PyTorch: 2.1.2+cu121
747
  - Accelerate: 0.32.1
748
+ - Datasets: 2.19.1
749
  - Tokenizers: 0.19.1
750
 
751
  ## Citation
config.json CHANGED
@@ -25,7 +25,7 @@
25
  "pad_token_id": 0,
26
  "position_embedding_type": "absolute",
27
  "torch_dtype": "float32",
28
- "transformers_version": "4.40.2",
29
  "type_vocab_size": 2,
30
  "use_cache": true,
31
  "vocab_size": 30522
 
25
  "pad_token_id": 0,
26
  "position_embedding_type": "absolute",
27
  "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
  "type_vocab_size": 2,
30
  "use_cache": true,
31
  "vocab_size": 30522
config_sentence_transformers.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "__version__": {
3
  "sentence_transformers": "3.0.1",
4
- "transformers": "4.40.2",
5
- "pytorch": "2.3.1"
6
  },
7
  "prompts": {},
8
  "default_prompt_name": null,
 
1
  {
2
  "__version__": {
3
  "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
  },
7
  "prompts": {},
8
  "default_prompt_name": null,
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dca649d3679e0f7725f2ce71425b5e4713878f8a7e96ba37c3290b3560c1ce62
3
  size 437951328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a4b3599c8539611169e8b7acd33e1e01633e1ff2df151e68a9df530a8550c09
3
  size 437951328