--- license: apache-2.0 tags: - generated_from_trainer - summarization model-index: - name: bart-base-xsum results: - task: type: summarization name: Summarization dataset: name: xsum type: xsum config: default split: test metrics: - name: ROUGE-1 type: rouge value: 38.643 verified: true - name: ROUGE-2 type: rouge value: 17.7546 verified: true - name: ROUGE-L type: rouge value: 32.2114 verified: true - name: ROUGE-LSUM type: rouge value: 32.2207 verified: true - name: loss type: loss value: 1.8224396705627441 verified: true - name: gen_len type: gen_len value: 19.7028 verified: true dataset: type: xsum: null name: xsum: null --- # bart-base-xsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on [xsum](https://huggingface.co./datasets/xsum) dataset. It achieves the following results on the evaluation set: - Loss: 0.8051 - R1: 0.5643 - R2: 0.3017 - Rl: 0.5427 - Rlsum: 0.5427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | R1 | R2 | Rl | Rlsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:| | 0.8983 | 1.0 | 6377 | 0.8145 | 0.5443 | 0.2724 | 0.5212 | 0.5211 | | 0.8211 | 2.0 | 12754 | 0.7940 | 0.5519 | 0.2831 | 0.5295 | 0.5295 | | 0.7701 | 3.0 | 19131 | 0.7839 | 0.5569 | 0.2896 | 0.5347 | 0.5348 | | 0.7046 | 4.0 | 25508 | 0.7792 | 0.5615 | 0.2956 | 0.5394 | 0.5393 | | 0.6837 | 5.0 | 31885 | 0.7806 | 0.5631 | 0.2993 | 0.5416 | 0.5416 | | 0.6412 | 6.0 | 38262 | 0.7816 | 0.5643 | 0.301 | 0.5427 | 0.5426 | | 0.6113 | 7.0 | 44639 | 0.7881 | 0.5645 | 0.3017 | 0.5428 | 0.5428 | | 0.5855 | 8.0 | 51016 | 0.7921 | 0.5651 | 0.303 | 0.5433 | 0.5432 | | 0.5636 | 9.0 | 57393 | 0.7972 | 0.5649 | 0.3032 | 0.5433 | 0.5433 | | 0.5482 | 10.0 | 63770 | 0.7996 | 0.565 | 0.3036 | 0.5436 | 0.5435 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6