monai
medical
File size: 7,141 Bytes
cd6dcce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3

# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math
from typing import Sequence, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from monai.utils import optional_import

Rearrange, _ = optional_import("einops.layers.torch", name="Rearrange")


class PatchEmbeddingBlock(nn.Module):
    """
    A patch embedding block, based on: "Dosovitskiy et al.,
    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"
    """

    def __init__(
        self,
        in_channels: int,
        img_size: Tuple[int, int, int],
        patch_size: Tuple[int, int, int],
        hidden_size: int,
        num_heads: int,
        pos_embed: str,
        dropout_rate: float = 0.0,
    ) -> None:
        """
        Args:
            in_channels: dimension of input channels.
            img_size: dimension of input image.
            patch_size: dimension of patch size.
            hidden_size: dimension of hidden layer.
            num_heads: number of attention heads.
            pos_embed: position embedding layer type.
            dropout_rate: faction of the input units to drop.

        """

        super().__init__()

        if not (0 <= dropout_rate <= 1):
            raise AssertionError("dropout_rate should be between 0 and 1.")

        if hidden_size % num_heads != 0:
            raise AssertionError("hidden size should be divisible by num_heads.")

        for m, p in zip(img_size, patch_size):
            if m < p:
                raise AssertionError("patch_size should be smaller than img_size.")

        if pos_embed not in ["conv", "perceptron"]:
            raise KeyError(f"Position embedding layer of type {pos_embed} is not supported.")

        if pos_embed == "perceptron":
            if img_size[0] % patch_size[0] != 0:
                raise AssertionError("img_size should be divisible by patch_size for perceptron patch embedding.")

        self.n_patches = (
            (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) * (img_size[2] // patch_size[2])
        )
        self.patch_dim = in_channels * patch_size[0] * patch_size[1] * patch_size[2]

        self.pos_embed = pos_embed
        self.patch_embeddings: Union[nn.Conv3d, nn.Sequential]
        if self.pos_embed == "conv":
            self.patch_embeddings = nn.Conv3d(
                in_channels=in_channels, out_channels=hidden_size, kernel_size=patch_size, stride=patch_size
            )
        elif self.pos_embed == "perceptron":
            self.patch_embeddings = nn.Sequential(
                Rearrange(
                    "b c (h p1) (w p2) (d p3)-> b (h w d) (p1 p2 p3 c)",
                    p1=patch_size[0],
                    p2=patch_size[1],
                    p3=patch_size[2],
                ),
                nn.Linear(self.patch_dim, hidden_size),
            )
        self.position_embeddings = nn.Parameter(torch.zeros(1, self.n_patches, hidden_size))
        self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
        self.dropout = nn.Dropout(dropout_rate)
        self.trunc_normal_(self.position_embeddings, mean=0.0, std=0.02, a=-2.0, b=2.0)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            self.trunc_normal_(m.weight, mean=0.0, std=0.02, a=-2.0, b=2.0)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def trunc_normal_(self, tensor, mean, std, a, b):
        # From PyTorch official master until it's in a few official releases - RW
        # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
        def norm_cdf(x):
            return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

        with torch.no_grad():
            l = norm_cdf((a - mean) / std)
            u = norm_cdf((b - mean) / std)
            tensor.uniform_(2 * l - 1, 2 * u - 1)
            tensor.erfinv_()
            tensor.mul_(std * math.sqrt(2.0))
            tensor.add_(mean)
            tensor.clamp_(min=a, max=b)
            return tensor

    def forward(self, x):
        if self.pos_embed == "conv":
            x = self.patch_embeddings(x)
            x = x.flatten(2)
            x = x.transpose(-1, -2)
        elif self.pos_embed == "perceptron":
            x = self.patch_embeddings(x)
        embeddings = x + self.position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class PatchEmbed3D(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (int): Patch token size. Default: (2,4,4).
        in_chans (int): Number of input video channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self,
        img_size: Sequence[int] = (96, 96, 96),
        patch_size=(4, 4, 4),
        in_chans: int = 1,
        embed_dim: int = 96,
        norm_layer=None,
    ):
        super().__init__()
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1], img_size[2] // patch_size[2])
        self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]

        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, d, h, w = x.size()
        if w % self.patch_size[2] != 0:
            x = F.pad(x, (0, self.patch_size[2] - w % self.patch_size[2]))
        if h % self.patch_size[1] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[1] - h % self.patch_size[1]))
        if d % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - d % self.patch_size[0]))

        x = self.proj(x)  # B C D Wh Ww
        if self.norm is not None:
            d, wh, ww = x.size(2), x.size(3), x.size(4)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, d, wh, ww)
            # pdb.set_trace()

        return x