{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.5.4", "changelog": { "0.5.4": "fix the wrong GPU index issue of multi-node", "0.5.3": "remove error dollar symbol in readme", "0.5.2": "remove the CheckpointLoader from the train.json", "0.5.1": "add RAM warning", "0.5.0": "update TensorRT descriptions", "0.4.9": "update the model weights", "0.4.8": "update the TensorRT part in the README file", "0.4.7": "fix mgpu finalize issue", "0.4.6": "enable deterministic training", "0.4.5": "add the command of executing inference with TensorRT models", "0.4.4": "adapt to BundleWorkflow interface", "0.4.3": "update this bundle to support TensorRT convert", "0.4.2": "support monai 1.2 new FlexibleUNet", "0.4.1": "add name tag", "0.4.0": "add support for multi-GPU training and evaluation", "0.3.2": "restructure readme to match updated template", "0.3.1": "add figures of workflow and metrics, add invert transform", "0.3.0": "update dataset processing", "0.2.1": "update to use monai 1.0.1", "0.2.0": "update license files", "0.1.0": "complete the first version model package", "0.0.1": "initialize the model package structure" }, "monai_version": "1.2.0", "pytorch_version": "1.13.1", "numpy_version": "1.22.2", "optional_packages_version": { "nibabel": "4.0.1", "pytorch-ignite": "0.4.9" }, "name": "Endoscopic tool segmentation", "task": "Endoscopic tool segmentation", "description": "A pre-trained binary segmentation model for endoscopic tool segmentation", "authors": "NVIDIA DLMED team", "copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION", "data_source": "private dataset", "data_type": "RGB", "image_classes": "three channel data, intensity [0-255]", "label_classes": "single channel data, 1/255 is tool, 0 is background", "pred_classes": "2 channels OneHot data, channel 1 is tool, channel 0 is background", "eval_metrics": { "mean_iou": 0.86 }, "references": [ "Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. ICML, 2019a. https://arxiv.org/pdf/1905.11946.pdf", "O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234\u2013241. Springer, 2015. https://arxiv.org/pdf/1505.04597.pdf" ], "network_data_format": { "inputs": { "image": { "type": "magnitude", "format": "RGB", "modality": "regular", "num_channels": 3, "spatial_shape": [ 736, 480 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "R", "1": "G", "2": "B" } } }, "outputs": { "pred": { "type": "image", "format": "segmentation", "num_channels": 2, "spatial_shape": [ 736, 480 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "background", "1": "tools" } } } } }