monai
medical
katielink's picture
fix license Copyright error
635fb71
raw
history blame
3.06 kB
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.3.1",
"changelog": {
"0.3.1": "fix license Copyright error",
"0.3.0": "update license files",
"0.2.1": "fix network_data_format error",
"0.2.0": "unify naming",
"0.1.1": "update for MetaTensor",
"0.1.0": "complete the model package"
},
"monai_version": "0.9.1",
"pytorch_version": "1.12.0",
"numpy_version": "1.22.4",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9"
},
"task": "Multimodal Brain Tumor segmentation",
"description": "A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "https://www.med.upenn.edu/sbia/brats2018/data.html",
"data_type": "nibabel",
"image_classes": "4 channel data, T1c, T1, T2, FLAIR at 1x1x1 mm",
"label_classes": "3 channel data, channel 0 for Tumor core, channel 1 for Whole tumor, channel 2 for Enhancing tumor",
"pred_classes": "3 channels data, same as label_classes",
"eval_metrics": {
"val_mean_dice": 0.8518,
"val_mean_dice_tc": 0.8559,
"val_mean_dice_wt": 0.9026,
"val_mean_dice_et": 0.7905
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Myronenko, Andriy. '3D MRI brain tumor segmentation using autoencoder regularization.' International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654"
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "MR",
"num_channels": 4,
"spatial_shape": [
"8*n",
"8*n",
"8*n"
],
"dtype": "float32",
"value_range": [],
"is_patch_data": true,
"channel_def": {
"0": "T1c",
"1": "T1",
"2": "T2",
"3": "FLAIR"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 3,
"spatial_shape": [
"8*n",
"8*n",
"8*n"
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "Tumor core",
"1": "Whole tumor",
"2": "Enhancing tumor"
}
}
}
}
}