File size: 2,156 Bytes
139850b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import argparse
import glob
import json
import os
import monai
from sklearn.model_selection import train_test_split
def produce_sample_dict(line: str):
names = os.listdir(line)
seg, t1ce, t1, t2, flair = [], [], [], [], []
for name in names:
name = os.path.join(line, name)
if "_seg.nii" in name:
seg.append(name)
elif "_t1ce.nii" in name:
t1ce.append(name)
elif "_t1.nii" in name:
t1.append(name)
elif "_t2.nii" in name:
t2.append(name)
elif "_flair.nii" in name:
flair.append(name)
return {"label": seg[0], "image": t1ce + t1 + t2 + flair}
def produce_datalist(dataset_dir: str):
"""
This function is used to split the dataset.
It will produce 200 samples for training, and the other samples are divided equally
into val and test sets.
"""
samples = sorted(glob.glob(os.path.join(dataset_dir, "*", "*"), recursive=True))
datalist = []
for line in samples:
datalist.append(produce_sample_dict(line))
train_list, other_list = train_test_split(datalist, train_size=200)
val_list, test_list = train_test_split(other_list, train_size=0.5)
return {"training": train_list, "validation": val_list, "testing": test_list}
def main(args):
"""
split the dataset and output the data list into a json file.
"""
data_file_base_dir = os.path.join(args.path, "training")
output_json = args.output
# produce deterministic data splits
monai.utils.set_determinism(seed=123)
datalist = produce_datalist(dataset_dir=data_file_base_dir)
with open(output_json, "w") as f:
json.dump(datalist, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument(
"--path",
type=str,
default="/workspace/data/medical/brats2018challenge",
help="root path of brats 2018 dataset.",
)
parser.add_argument(
"--output", type=str, default="configs/datalist.json", help="relative path of output datalist json file."
)
args = parser.parse_args()
main(args)
|