--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: humor-no-humor results: [] --- # humor-no-humor This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on a joke/no-joke dataset in order to detect humor. It achieves the following results on the evaluation set: - Loss: 0.1269 - F1: 0.9537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1707 | 1.0 | 1677 | 0.1398 | 0.9423 | | 0.1427 | 2.0 | 3354 | 0.1291 | 0.9531 | | 0.1384 | 3.0 | 5031 | 0.1269 | 0.9537 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3