moersxm12138 commited on
Commit
ecda0df
Β·
verified Β·
1 Parent(s): 432ef4c
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MusicMamba
2
+
3
+ This is the official implementation of MusicMamba.
4
+
5
+ *Checkout our demo and paper* : [Demo](https://moersxm.github.io/MusicMamba_Demo/) | [arXiv](https://arxiv.org/abs/2409.02421)
6
+
7
+ ## Environment
8
+ * Clone this Repo
9
+
10
+ ```bash
11
+ git clone https://github.com/Wietc/MusicMamba.git
12
+ ```
13
+
14
+ * using python version 3.11.5
15
+ * using pytorch version 2.2.1
16
+ * install python dependencies
17
+
18
+ `pip install -r requirements.txt`
19
+
20
+ * Mamba needs to be downloaded separately
21
+
22
+ `pip install mamba_ssm`
23
+
24
+ * install checkpoints from Huggingface
25
+
26
+
27
+ ## To train the model with GPU
28
+
29
+ We currently do not offer fine-tuning functionality.
30
+
31
+ ## To generate music
32
+
33
+ `python generate.py`
34
+
35
+ ## Details of the files in this repo
36
+ ```
37
+ `
38
+ β”œβ”€β”€ data Stores train, test and val data.
39
+ β”‚ └── FolkDB
40
+ β”‚Β Β  β”œβ”€β”€ train
41
+ β”‚Β Β  β”œβ”€β”€ test
42
+ β”‚ └── val
43
+ β”œβ”€β”€ dataset.py Progress datasets.
44
+ β”œβ”€β”€ generate.py For generating music. (Detailed usage are written in the file)
45
+ β”œβ”€β”€ model.py The MusicMamba Architecture.
46
+ β”œβ”€β”€ midi_tokenize Remi-M tokenize.
47
+ β”œβ”€β”€ utilities Tools for generating music.
48
+ β”‚Β Β  β”œβ”€β”€ argument_funcs.py Some arguments for generating.
49
+ β”‚Β Β  β”œβ”€β”€ constants.py
50
+ β”‚ └── device.py
51
+ └── README.md Readme
52
+ ```
53
+
54
+ ## Citation
55
+ If you find this work helpful and use our code in your research, please kindly cite our paper:
56
+ ```
57
+ @article{MusicMamba,
58
+ title={MusicMamba: A Dual-Feature Modeling Approach for Generating Chinese Traditional Music with Modal Precision},
59
+ author={Jiatao Chen and Xing Tang and Tianming Xie and Jing Wang and Wenjing Dong and Bing Shi}, year={2024},
60
+ eprint={2409.02421},
61
+ archivePrefix={arXiv},
62
+ }
63
+ ```