|
|
|
|
|
from dataclasses import dataclass |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import inspect |
|
@dataclass |
|
class GPTConfig: |
|
vocab_size: int = 50257 |
|
block_size: int = 1024 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = self.c_proj(y) |
|
return y |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4) |
|
self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd) |
|
self.gelu = nn.GELU() |
|
self.NANOGPT_SCALE_INIT = 1 |
|
|
|
def forward(self, x): |
|
x = self.gelu(self.c_fc(x)) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
class GPT(nn.Module): |
|
def __init__(self, config, master_process): |
|
super().__init__() |
|
self.master_process = master_process |
|
self.config = config |
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = nn.LayerNorm(config.n_embd) |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.transformer.wte.weight = self.lm_head.weight |
|
self.apply(self._init_weights) |
|
if self.master_process: |
|
print(f"Model initialized. Model has {sum(p.numel() for p in self.parameters() if p.requires_grad):,} trainable parameters") |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.2 |
|
if hasattr(module, 'NANOGPT_SCALE_INIT'): |
|
std*= (2 * self.config.n_layer)**-0.5 |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
B, T = idx.size() |
|
assert T <= self.config.block_size, "Cannot forward, model block size is exhausted." |
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
pos_emb = self.transformer.wpe(pos) |
|
tok_emb = self.transformer.wte(idx) |
|
x = tok_emb + pos_emb |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
return logits, loss |
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, device): |
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} |
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >=2] |
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] |
|
optim_groups = [ |
|
{"params": decay_params, "weight_decay": weight_decay}, |
|
{"params": nodecay_params, "weight_decay": 0.0}, |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
if self.master_process: |
|
print(f"Number of decay parameters tensors: {len(decay_params)}, Number of decay parameters: {num_decay_params:,}") |
|
print(f"Number of no decay parameters tensors: {len(nodecay_params)}, Number of no decay parameters: {num_nodecay_params:,}") |
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
use_fused = fused_available and 'cuda' == device |
|
if self.master_process: |
|
print(f'Using {"fused" if use_fused else "unfused"} AdamW') |
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8) |
|
return optimizer |