gpt-project / gpt-2 /model.py
mnmnmnmn's picture
Upload 15 files
7fc0f78 verified
# model.py
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
import inspect
@dataclass
class GPTConfig:
vocab_size: int = 50257
block_size: int = 1024
n_layer: int = 12
n_head: int = 12
n_embd: int = 768 # = 64 * 12
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4)
self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd)
self.gelu = nn.GELU()
self.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.gelu(self.c_fc(x))
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config, master_process):
super().__init__()
self.master_process = master_process
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
if self.master_process:
print(f"Model initialized. Model has {sum(p.numel() for p in self.parameters() if p.requires_grad):,} trainable parameters")
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.2
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std*= (2 * self.config.n_layer)**-0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, "Cannot forward, model block size is exhausted."
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, device):
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
decay_params = [p for n, p in param_dict.items() if p.dim() >=2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
if self.master_process:
print(f"Number of decay parameters tensors: {len(decay_params)}, Number of decay parameters: {num_decay_params:,}")
print(f"Number of no decay parameters tensors: {len(nodecay_params)}, Number of no decay parameters: {num_nodecay_params:,}")
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and 'cuda' == device
if self.master_process:
print(f'Using {"fused" if use_fused else "unfused"} AdamW')
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8)
return optimizer